Cargando…
An improved random forest-based computational model for predicting novel miRNA-disease associations
BACKGROUND: A large body of evidence shows that miRNA regulates the expression of its target genes at post-transcriptional level and the dysregulation of miRNA is related to many complex human diseases. Accurately discovering disease-related miRNAs is conductive to the exploring of the pathogenesis...
Autores principales: | Yao, Dengju, Zhan, Xiaojuan, Kwoh, Chee-Keong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889672/ https://www.ncbi.nlm.nih.gov/pubmed/31795954 http://dx.doi.org/10.1186/s12859-019-3290-7 |
Ejemplares similares
-
A random forest based computational model for predicting novel lncRNA-disease associations
por: Yao, Dengju, et al.
Publicado: (2020) -
ncRNA2MetS: a manually curated database for non-coding RNAs associated with metabolic syndrome
por: Yao, Dengju, et al.
Publicado: (2019) -
A clustering-based sampling method for miRNA-disease association prediction
por: Wei, Zheng, et al.
Publicado: (2022) -
Geometric complement heterogeneous information and random forest for predicting lncRNA-disease associations
por: Yao, Dengju, et al.
Publicado: (2022) -
Novel Human miRNA-Disease Association Inference Based on Random Forest
por: Chen, Xing, et al.
Publicado: (2018)