Cargando…
Robust Interacting Multiple Model Filter Based on Student’s t-Distribution for Heavy-Tailed Measurement Noises
In maneuvering target tracking applications, the performance of the traditional interacting multiple model (IMM) filter deteriorates seriously under heavy-tailed measurement noises which are induced by outliers. A robust IMM filter utilizing Student’s t-distribution is proposed to handle the heavy-t...
Autores principales: | Li, Dong, Sun, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891737/ https://www.ncbi.nlm.nih.gov/pubmed/31698779 http://dx.doi.org/10.3390/s19224830 |
Ejemplares similares
-
A Robust SMC-PHD Filter for Multi-Target Tracking with Unknown Heavy-Tailed Measurement Noise
por: Gong, Yang, et al.
Publicado: (2021) -
An Adaptive Filter for Nonlinear Multi-Sensor Systems with Heavy-Tailed Noise
por: Dong, Xiangxiang, et al.
Publicado: (2020) -
Heavy-tailed distributions and robustness in economics and finance
por: Ibragimov, Marat, et al.
Publicado: (2015) -
Maximum Correntropy Based Unscented Particle Filter for Cooperative Navigation with Heavy-Tailed Measurement Noises
por: Fan, Ying, et al.
Publicado: (2018) -
Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions
por: Wan, Wai-Yin, et al.
Publicado: (2011)