Cargando…
A Dual Neural Architecture Combined SqueezeNet with OctConv for LiDAR Data Classification
Light detection and ranging (LiDAR) is a frequently used technique of data acquisition and it is widely used in diverse practical applications. In recent years, deep convolutional neural networks (CNNs) have shown their effectiveness for LiDAR-derived rasterized digital surface models (LiDAR-DSM) da...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891785/ https://www.ncbi.nlm.nih.gov/pubmed/31726726 http://dx.doi.org/10.3390/s19224927 |