Cargando…
A Dual Neural Architecture Combined SqueezeNet with OctConv for LiDAR Data Classification
Light detection and ranging (LiDAR) is a frequently used technique of data acquisition and it is widely used in diverse practical applications. In recent years, deep convolutional neural networks (CNNs) have shown their effectiveness for LiDAR-derived rasterized digital surface models (LiDAR-DSM) da...
Autores principales: | Wang, Aili, Wang, Minhui, Jiang, Kaiyuan, Cao, Mengqing, Iwahori, Yuji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891785/ https://www.ncbi.nlm.nih.gov/pubmed/31726726 http://dx.doi.org/10.3390/s19224927 |
Ejemplares similares
-
A Novel LiDAR Data Classification Algorithm Combined CapsNet with ResNet
por: Wang, Aili, et al.
Publicado: (2020) -
SNELM: SqueezeNet-Guided ELM for COVID-19 Recognition
por: Zhang, Yudong, et al.
Publicado: (2023) -
Real-Time Vehicle Make and Model Recognition with the Residual SqueezeNet Architecture
por: Lee, Hyo Jong, et al.
Publicado: (2019) -
Modified SqueezeNet Architecture for Parkinson’s Disease Detection Based on Keypress Data
por: Bernardo, Lucas Salvador, et al.
Publicado: (2022) -
Two-Stage Intelligent DarkNet-SqueezeNet Architecture-Based Framework for Multiclass Rice Grain Variety Identification
por: Fatima, Maryam, et al.
Publicado: (2022)