Cargando…

Hydrophobic ligands influence the structure, stability, and processing of the major cockroach allergen Bla g 1

The cockroach allergen Bla g 1 forms a novel fold consisting of 12 amphipathic alpha-helices enclosing an exceptionally large hydrophobic cavity which was previously demonstrated to bind a variety of lipids. Since lipid-dependent immunoactivity is observed in numerous allergens, understanding the st...

Descripción completa

Detalles Bibliográficos
Autores principales: Foo, Alexander C. Y., Thompson, Peter M., Perera, Lalith, Arora, Simrat, DeRose, Eugene F., Williams, Jason, Mueller, Geoffrey A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6893020/
https://www.ncbi.nlm.nih.gov/pubmed/31797892
http://dx.doi.org/10.1038/s41598-019-54689-8
Descripción
Sumario:The cockroach allergen Bla g 1 forms a novel fold consisting of 12 amphipathic alpha-helices enclosing an exceptionally large hydrophobic cavity which was previously demonstrated to bind a variety of lipids. Since lipid-dependent immunoactivity is observed in numerous allergens, understanding the structural basis of this interaction could yield insights into the molecular determinants of allergenicity. Here, we report atomic modelling of Bla g 1 bound to both fatty-acid and phospholipids ligands, with 8 acyl chains suggested to represent full stoichiometric binding. This unusually high occupancy was verified experimentally, though both modelling and circular dichroism indicate that the general alpha-helical structure is maintained regardless of cargo loading. Fatty-acid cargoes significantly enhanced thermostability while inhibiting cleavage by cathepsin S, an endosomal protease essential for antigen processing and presentation; the latter of which was found to correlate to a decreased production of known T-cell epitopes. Both effects were strongly dependent on acyl chain length, with 18–20 carbons providing the maximal increase in melting temperature (~20 °C) while completely abolishing proteolysis. Diacyl chain cargoes provided similar enhancements to thermostability, but yielded reduced levels of proteolytic resistance. This study describes how the biophysical properties of Bla g 1 ligand binding and digestion may relate to antigen processing, with potential downstream implications for immunogenicity.