Cargando…
Discovery, characterization and potential roles of a novel NF-YAx splice variant in human neuroblastoma
BACKGROUND: Identification of novel cancer-associated splice variants is of potential diagnostic, prognostic and therapeutic importance. NF-Y transcription factor is comprised of NF-YA, NF-YB and NF-YC subunits, binds inverted CCAAT-boxes in ≈70% of gene promoters, regulates > 1000 cancer-associa...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896337/ https://www.ncbi.nlm.nih.gov/pubmed/31805994 http://dx.doi.org/10.1186/s13046-019-1481-8 |
_version_ | 1783476756241448960 |
---|---|
author | Cappabianca, Lucia Farina, Antonietta Rosella Di Marcotullio, Lucia Infante, Paola De Simone, Daniele Sebastiano, Michela Mackay, Andrew Reay |
author_facet | Cappabianca, Lucia Farina, Antonietta Rosella Di Marcotullio, Lucia Infante, Paola De Simone, Daniele Sebastiano, Michela Mackay, Andrew Reay |
author_sort | Cappabianca, Lucia |
collection | PubMed |
description | BACKGROUND: Identification of novel cancer-associated splice variants is of potential diagnostic, prognostic and therapeutic importance. NF-Y transcription factor is comprised of NF-YA, NF-YB and NF-YC subunits, binds inverted CCAAT-boxes in ≈70% of gene promoters, regulates > 1000 cancer-associated genes and proteins involved in proliferation, staminality, differentiation, apoptosis, metabolism and is subject to component alternative splicing. RT-PCR evaluation of alternative NF-YA splicing in primary human neuroblastomas (NBs), led to discovery of a novel NF-YAx splice variant, also expressed during mouse embryo development and induced by doxorubicin in NB cells. Here, we report the discovery and characterisation of NF-YAx and discus its potential roles in NB. METHODS: NF-YAx cDNA was RT-PCR-cloned from a stage 3 NB (provided by the Italian Association of Haematology and Paediatric Oncology, Genova, IT), sequenced and expressed as a protein using standard methods and compared to known fully-spliced NF-YAl and exon B-skipped NF-YAs isoforms in: EMSAs for capacity to form NF-Y complexes; by co-transfection, co-immunoprecipitation and Western blotting for capacity to bind Sp1; by IF for localisation; in AO/EtBr cell-death and colony formation assays for relative cytotoxicity, and by siRNA knockdown, use of inhibitors and Western blotting for potential mechanisms of action. Stable SH-SY5Y transfectants of all three NF-YA isoforms were also propagated and compared by RT-PCR and Western blotting for differences in cell-death and stem cell (SC)-associated gene expression, in cell-death assays for sensitivity to doxorubicin and in in vitro proliferation, substrate-independent growth and in vivo tumour xenograft assays for differences in growth and tumourigenic capacity. RESULTS: NF-YAx was characterized as a novel variant with NF-YA exons B, D and partial F skipping, detected in 20% of NF-YA positive NBs, was the exclusive isoform in a stage 3 NB, expressed in mouse stage E11.5–14 embryos and induced by doxorubicin in SH-SY5Y NB cells. The NF-YAx protein exhibited nuclear localisation, competed with other isoforms in CCAAT box-binding NF-Y complexes but, in contrast to other isoforms, did not bind Sp1. NF-YAx expression in neural-related progenitor and NB cells repressed Bmi1 expression, induced KIF1Bβ expression and promoted KIF1Bβ-dependent necroptosis but in NB cells also selected tumourigenic, doxorubicin-resistant, CSC-like sub-populations, resistant to NF-YAx cytotoxicity. CONCLUSIONS: The discovery of NF-YAx in NBs, its expression in mouse embryos and induction by doxorubicin in NB cells, unveils a novel NF-YA splice mechanism and variant, regulated by and involved in development, genotoxic-stress and NB. NF-YAx substitution of other isoforms in NF-Y complexes and loss of capacity to bind Sp1, characterises this novel isoform as a functional modifier of NF-Y and its promotion of KIF1Bβ-dependent neural-lineage progenitor and NB cell necroptosis, association with doxorubicin-induced necroptosis and expression in mouse embryos coinciding with KIF1Bβ-dependent sympathetic neuroblast-culling, confirm a cytotoxic function and potential role in suppressing NB initiation. On the other hand, the in vitro selection of CSC-like NB subpopulations resistant to NF-YAx cytotoxicity not only helps to explain high-level exclusive NF-YAx expression in a stage 3 NB but also supports a role for NF-YAx in disease progression and identifies a potential doxorubicin-inducible mechanism for post-therapeutic relapse. |
format | Online Article Text |
id | pubmed-6896337 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-68963372019-12-11 Discovery, characterization and potential roles of a novel NF-YAx splice variant in human neuroblastoma Cappabianca, Lucia Farina, Antonietta Rosella Di Marcotullio, Lucia Infante, Paola De Simone, Daniele Sebastiano, Michela Mackay, Andrew Reay J Exp Clin Cancer Res Research BACKGROUND: Identification of novel cancer-associated splice variants is of potential diagnostic, prognostic and therapeutic importance. NF-Y transcription factor is comprised of NF-YA, NF-YB and NF-YC subunits, binds inverted CCAAT-boxes in ≈70% of gene promoters, regulates > 1000 cancer-associated genes and proteins involved in proliferation, staminality, differentiation, apoptosis, metabolism and is subject to component alternative splicing. RT-PCR evaluation of alternative NF-YA splicing in primary human neuroblastomas (NBs), led to discovery of a novel NF-YAx splice variant, also expressed during mouse embryo development and induced by doxorubicin in NB cells. Here, we report the discovery and characterisation of NF-YAx and discus its potential roles in NB. METHODS: NF-YAx cDNA was RT-PCR-cloned from a stage 3 NB (provided by the Italian Association of Haematology and Paediatric Oncology, Genova, IT), sequenced and expressed as a protein using standard methods and compared to known fully-spliced NF-YAl and exon B-skipped NF-YAs isoforms in: EMSAs for capacity to form NF-Y complexes; by co-transfection, co-immunoprecipitation and Western blotting for capacity to bind Sp1; by IF for localisation; in AO/EtBr cell-death and colony formation assays for relative cytotoxicity, and by siRNA knockdown, use of inhibitors and Western blotting for potential mechanisms of action. Stable SH-SY5Y transfectants of all three NF-YA isoforms were also propagated and compared by RT-PCR and Western blotting for differences in cell-death and stem cell (SC)-associated gene expression, in cell-death assays for sensitivity to doxorubicin and in in vitro proliferation, substrate-independent growth and in vivo tumour xenograft assays for differences in growth and tumourigenic capacity. RESULTS: NF-YAx was characterized as a novel variant with NF-YA exons B, D and partial F skipping, detected in 20% of NF-YA positive NBs, was the exclusive isoform in a stage 3 NB, expressed in mouse stage E11.5–14 embryos and induced by doxorubicin in SH-SY5Y NB cells. The NF-YAx protein exhibited nuclear localisation, competed with other isoforms in CCAAT box-binding NF-Y complexes but, in contrast to other isoforms, did not bind Sp1. NF-YAx expression in neural-related progenitor and NB cells repressed Bmi1 expression, induced KIF1Bβ expression and promoted KIF1Bβ-dependent necroptosis but in NB cells also selected tumourigenic, doxorubicin-resistant, CSC-like sub-populations, resistant to NF-YAx cytotoxicity. CONCLUSIONS: The discovery of NF-YAx in NBs, its expression in mouse embryos and induction by doxorubicin in NB cells, unveils a novel NF-YA splice mechanism and variant, regulated by and involved in development, genotoxic-stress and NB. NF-YAx substitution of other isoforms in NF-Y complexes and loss of capacity to bind Sp1, characterises this novel isoform as a functional modifier of NF-Y and its promotion of KIF1Bβ-dependent neural-lineage progenitor and NB cell necroptosis, association with doxorubicin-induced necroptosis and expression in mouse embryos coinciding with KIF1Bβ-dependent sympathetic neuroblast-culling, confirm a cytotoxic function and potential role in suppressing NB initiation. On the other hand, the in vitro selection of CSC-like NB subpopulations resistant to NF-YAx cytotoxicity not only helps to explain high-level exclusive NF-YAx expression in a stage 3 NB but also supports a role for NF-YAx in disease progression and identifies a potential doxorubicin-inducible mechanism for post-therapeutic relapse. BioMed Central 2019-12-05 /pmc/articles/PMC6896337/ /pubmed/31805994 http://dx.doi.org/10.1186/s13046-019-1481-8 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Cappabianca, Lucia Farina, Antonietta Rosella Di Marcotullio, Lucia Infante, Paola De Simone, Daniele Sebastiano, Michela Mackay, Andrew Reay Discovery, characterization and potential roles of a novel NF-YAx splice variant in human neuroblastoma |
title | Discovery, characterization and potential roles of a novel NF-YAx splice variant in human neuroblastoma |
title_full | Discovery, characterization and potential roles of a novel NF-YAx splice variant in human neuroblastoma |
title_fullStr | Discovery, characterization and potential roles of a novel NF-YAx splice variant in human neuroblastoma |
title_full_unstemmed | Discovery, characterization and potential roles of a novel NF-YAx splice variant in human neuroblastoma |
title_short | Discovery, characterization and potential roles of a novel NF-YAx splice variant in human neuroblastoma |
title_sort | discovery, characterization and potential roles of a novel nf-yax splice variant in human neuroblastoma |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896337/ https://www.ncbi.nlm.nih.gov/pubmed/31805994 http://dx.doi.org/10.1186/s13046-019-1481-8 |
work_keys_str_mv | AT cappabiancalucia discoverycharacterizationandpotentialrolesofanovelnfyaxsplicevariantinhumanneuroblastoma AT farinaantoniettarosella discoverycharacterizationandpotentialrolesofanovelnfyaxsplicevariantinhumanneuroblastoma AT dimarcotulliolucia discoverycharacterizationandpotentialrolesofanovelnfyaxsplicevariantinhumanneuroblastoma AT infantepaola discoverycharacterizationandpotentialrolesofanovelnfyaxsplicevariantinhumanneuroblastoma AT desimonedaniele discoverycharacterizationandpotentialrolesofanovelnfyaxsplicevariantinhumanneuroblastoma AT sebastianomichela discoverycharacterizationandpotentialrolesofanovelnfyaxsplicevariantinhumanneuroblastoma AT mackayandrewreay discoverycharacterizationandpotentialrolesofanovelnfyaxsplicevariantinhumanneuroblastoma |