Cargando…

Mechanistic insights into mRNA 3′-end processing

The polyadenosine (poly(A)) tail found on the 3′-end of almost all eukaryotic mRNAs is important for mRNA stability and regulation of translation. mRNA 3′-end processing occurs co-transcriptionally and involves more than 20 proteins to specifically recognize the polyadenylation site, cleave the pre-...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Ananthanarayanan, Clerici, Marcello, Muckenfuss, Lena M, Passmore, Lori A, Jinek, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6900580/
https://www.ncbi.nlm.nih.gov/pubmed/31499460
http://dx.doi.org/10.1016/j.sbi.2019.08.001
Descripción
Sumario:The polyadenosine (poly(A)) tail found on the 3′-end of almost all eukaryotic mRNAs is important for mRNA stability and regulation of translation. mRNA 3′-end processing occurs co-transcriptionally and involves more than 20 proteins to specifically recognize the polyadenylation site, cleave the pre-mRNA, add a poly(A) tail, and trigger transcription termination. The polyadenylation site (PAS) defines the end of the 3′-untranslated region (3′-UTR) and, therefore, selection of the cleavage site is a critical event in regulating gene expression. Integrated structural biology approaches including biochemical reconstitution of multi-subunit complexes, cross-linking mass spectrometry, and structural analyses by X- ray crystallography and single-particle electron cryo-microscopy (cryoEM) have enabled recent progress in understanding the molecular mechanisms of the mRNA 3′-end processing machinery. Here, we describe new molecular insights into pre-mRNA recognition, cleavage and polyadenylation.