Cargando…
Exact hypothesis testing for shrinkage-based Gaussian graphical models
MOTIVATION: One of the main goals in systems biology is to learn molecular regulatory networks from quantitative profile data. In particular, Gaussian graphical models (GGMs) are widely used network models in bioinformatics where variables (e.g. transcripts, metabolites or proteins) are represented...
Autores principales: | Bernal, Victor, Bischoff, Rainer, Guryev, Victor, Grzegorczyk, Marco, Horvatovich, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901079/ https://www.ncbi.nlm.nih.gov/pubmed/31077287 http://dx.doi.org/10.1093/bioinformatics/btz357 |
Ejemplares similares
-
GeneNetTools: tests for Gaussian graphical models with shrinkage
por: Bernal, Victor, et al.
Publicado: (2022) -
The ‘un-shrunk’ partial correlation in Gaussian graphical models
por: Bernal, Victor, et al.
Publicado: (2021) -
Reasoning with probabilistic and deterministic graphical models: exact algorithms
por: Dechter, Rina, et al.
Publicado: (2019) -
A Statistical Test for Differential Network Analysis Based on Inference of Gaussian Graphical Model
por: He, Hao, et al.
Publicado: (2019) -
Fast Bayesian inference in large Gaussian graphical models
por: Leday, Gwenaël G. R., et al.
Publicado: (2019)