Cargando…
Accuracy, robustness and scalability of dimensionality reduction methods for single-cell RNA-seq analysis
BACKGROUND: Dimensionality reduction is an indispensable analytic component for many areas of single-cell RNA sequencing (scRNA-seq) data analysis. Proper dimensionality reduction can allow for effective noise removal and facilitate many downstream analyses that include cell clustering and lineage r...
Autores principales: | Sun, Shiquan, Zhu, Jiaqiang, Ma, Ying, Zhou, Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902413/ https://www.ncbi.nlm.nih.gov/pubmed/31823809 http://dx.doi.org/10.1186/s13059-019-1898-6 |
Ejemplares similares
-
SPARK-X: non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies
por: Zhu, Jiaqiang, et al.
Publicado: (2021) -
A Comparison for Dimensionality Reduction Methods of Single-Cell RNA-seq Data
por: Xiang, Ruizhi, et al.
Publicado: (2021) -
An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq Data with Single-Cell RNA-Seq Data
por: Sun, Xifang, et al.
Publicado: (2019) -
Tuning parameters of dimensionality reduction methods for single-cell RNA-seq analysis
por: Raimundo, Felix, et al.
Publicado: (2020) -
NewWave: a scalable R/Bioconductor package for the dimensionality reduction and batch effect removal of single-cell RNA-seq data
por: Agostinis, Federico, et al.
Publicado: (2022)