Cargando…
Deciphering protein evolution and fitness landscapes with latent space models
Protein sequences contain rich information about protein evolution, fitness landscapes, and stability. Here we investigate how latent space models trained using variational auto-encoders can infer these properties from sequences. Using both simulated and real sequences, we show that the low dimensio...
Autores principales: | Ding, Xinqiang, Zou, Zhengting, Brooks III, Charles L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904478/ https://www.ncbi.nlm.nih.gov/pubmed/31822668 http://dx.doi.org/10.1038/s41467-019-13633-0 |
Ejemplares similares
-
Experimental Rugged Fitness Landscape in Protein Sequence Space
por: Hayashi, Yuuki, et al.
Publicado: (2006) -
Latent generative landscapes as maps of functional diversity in protein sequence space
por: Ziegler, Cheyenne, et al.
Publicado: (2023) -
Inferring protein fitness landscapes from laboratory evolution experiments
por: D’Costa, Sameer, et al.
Publicado: (2023) -
Deciphering the combinatorial landscape of immunity
por: Cappuccio, Antonio, et al.
Publicado: (2020) -
Adaptation, fitness landscape learning and fast evolution
por: Reinitz, John, et al.
Publicado: (2019)