Cargando…

Machine-learning based patient classification using Hepatitis B virus full-length genome quasispecies from Asian and European cohorts

Chronic infection with Hepatitis B virus (HBV) is a major risk factor for the development of advanced liver disease including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The relative contribution of virological factors to disease progression has not been fully defined and tools aiding t...

Descripción completa

Detalles Bibliográficos
Autores principales: Mueller-Breckenridge, Alan J., Garcia-Alcalde, Fernando, Wildum, Steffen, Smits, Saskia L., de Man, Robert A., van Campenhout, Margo J. H., Brouwer, Willem P., Niu, Jianjun, Young, John A. T., Najera, Isabel, Zhu, Lina, Wu, Daitze, Racek, Tomas, Hundie, Gadissa Bedada, Lin, Yong, Boucher, Charles A., van de Vijver, David, Haagmans, Bart L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906359/
https://www.ncbi.nlm.nih.gov/pubmed/31827222
http://dx.doi.org/10.1038/s41598-019-55445-8
_version_ 1783478330602815488
author Mueller-Breckenridge, Alan J.
Garcia-Alcalde, Fernando
Wildum, Steffen
Smits, Saskia L.
de Man, Robert A.
van Campenhout, Margo J. H.
Brouwer, Willem P.
Niu, Jianjun
Young, John A. T.
Najera, Isabel
Zhu, Lina
Wu, Daitze
Racek, Tomas
Hundie, Gadissa Bedada
Lin, Yong
Boucher, Charles A.
van de Vijver, David
Haagmans, Bart L.
author_facet Mueller-Breckenridge, Alan J.
Garcia-Alcalde, Fernando
Wildum, Steffen
Smits, Saskia L.
de Man, Robert A.
van Campenhout, Margo J. H.
Brouwer, Willem P.
Niu, Jianjun
Young, John A. T.
Najera, Isabel
Zhu, Lina
Wu, Daitze
Racek, Tomas
Hundie, Gadissa Bedada
Lin, Yong
Boucher, Charles A.
van de Vijver, David
Haagmans, Bart L.
author_sort Mueller-Breckenridge, Alan J.
collection PubMed
description Chronic infection with Hepatitis B virus (HBV) is a major risk factor for the development of advanced liver disease including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The relative contribution of virological factors to disease progression has not been fully defined and tools aiding the deconvolution of complex patient virus profiles is an unmet clinical need. Variable viral mutant signatures develop within individual patients due to the low-fidelity replication of the viral polymerase creating ‘quasispecies’ populations. Here we present the first comprehensive survey of the diversity of HBV quasispecies through ultra-deep sequencing of the complete HBV genome across two distinct European and Asian patient populations. Seroconversion to the HBV e antigen (HBeAg) represents a critical clinical waymark in infected individuals. Using a machine learning approach, a model was developed to determine the viral variants that accurately classify HBeAg status. Serial surveys of patient quasispecies populations and advanced analytics will facilitate clinical decision support for chronic HBV infection and direct therapeutic strategies through improved patient stratification.
format Online
Article
Text
id pubmed-6906359
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-69063592019-12-13 Machine-learning based patient classification using Hepatitis B virus full-length genome quasispecies from Asian and European cohorts Mueller-Breckenridge, Alan J. Garcia-Alcalde, Fernando Wildum, Steffen Smits, Saskia L. de Man, Robert A. van Campenhout, Margo J. H. Brouwer, Willem P. Niu, Jianjun Young, John A. T. Najera, Isabel Zhu, Lina Wu, Daitze Racek, Tomas Hundie, Gadissa Bedada Lin, Yong Boucher, Charles A. van de Vijver, David Haagmans, Bart L. Sci Rep Article Chronic infection with Hepatitis B virus (HBV) is a major risk factor for the development of advanced liver disease including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The relative contribution of virological factors to disease progression has not been fully defined and tools aiding the deconvolution of complex patient virus profiles is an unmet clinical need. Variable viral mutant signatures develop within individual patients due to the low-fidelity replication of the viral polymerase creating ‘quasispecies’ populations. Here we present the first comprehensive survey of the diversity of HBV quasispecies through ultra-deep sequencing of the complete HBV genome across two distinct European and Asian patient populations. Seroconversion to the HBV e antigen (HBeAg) represents a critical clinical waymark in infected individuals. Using a machine learning approach, a model was developed to determine the viral variants that accurately classify HBeAg status. Serial surveys of patient quasispecies populations and advanced analytics will facilitate clinical decision support for chronic HBV infection and direct therapeutic strategies through improved patient stratification. Nature Publishing Group UK 2019-12-11 /pmc/articles/PMC6906359/ /pubmed/31827222 http://dx.doi.org/10.1038/s41598-019-55445-8 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Mueller-Breckenridge, Alan J.
Garcia-Alcalde, Fernando
Wildum, Steffen
Smits, Saskia L.
de Man, Robert A.
van Campenhout, Margo J. H.
Brouwer, Willem P.
Niu, Jianjun
Young, John A. T.
Najera, Isabel
Zhu, Lina
Wu, Daitze
Racek, Tomas
Hundie, Gadissa Bedada
Lin, Yong
Boucher, Charles A.
van de Vijver, David
Haagmans, Bart L.
Machine-learning based patient classification using Hepatitis B virus full-length genome quasispecies from Asian and European cohorts
title Machine-learning based patient classification using Hepatitis B virus full-length genome quasispecies from Asian and European cohorts
title_full Machine-learning based patient classification using Hepatitis B virus full-length genome quasispecies from Asian and European cohorts
title_fullStr Machine-learning based patient classification using Hepatitis B virus full-length genome quasispecies from Asian and European cohorts
title_full_unstemmed Machine-learning based patient classification using Hepatitis B virus full-length genome quasispecies from Asian and European cohorts
title_short Machine-learning based patient classification using Hepatitis B virus full-length genome quasispecies from Asian and European cohorts
title_sort machine-learning based patient classification using hepatitis b virus full-length genome quasispecies from asian and european cohorts
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906359/
https://www.ncbi.nlm.nih.gov/pubmed/31827222
http://dx.doi.org/10.1038/s41598-019-55445-8
work_keys_str_mv AT muellerbreckenridgealanj machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts
AT garciaalcaldefernando machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts
AT wildumsteffen machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts
AT smitssaskial machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts
AT demanroberta machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts
AT vancampenhoutmargojh machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts
AT brouwerwillemp machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts
AT niujianjun machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts
AT youngjohnat machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts
AT najeraisabel machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts
AT zhulina machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts
AT wudaitze machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts
AT racektomas machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts
AT hundiegadissabedada machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts
AT linyong machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts
AT bouchercharlesa machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts
AT vandevijverdavid machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts
AT haagmansbartl machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts