Cargando…
Machine-learning based patient classification using Hepatitis B virus full-length genome quasispecies from Asian and European cohorts
Chronic infection with Hepatitis B virus (HBV) is a major risk factor for the development of advanced liver disease including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The relative contribution of virological factors to disease progression has not been fully defined and tools aiding t...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906359/ https://www.ncbi.nlm.nih.gov/pubmed/31827222 http://dx.doi.org/10.1038/s41598-019-55445-8 |
_version_ | 1783478330602815488 |
---|---|
author | Mueller-Breckenridge, Alan J. Garcia-Alcalde, Fernando Wildum, Steffen Smits, Saskia L. de Man, Robert A. van Campenhout, Margo J. H. Brouwer, Willem P. Niu, Jianjun Young, John A. T. Najera, Isabel Zhu, Lina Wu, Daitze Racek, Tomas Hundie, Gadissa Bedada Lin, Yong Boucher, Charles A. van de Vijver, David Haagmans, Bart L. |
author_facet | Mueller-Breckenridge, Alan J. Garcia-Alcalde, Fernando Wildum, Steffen Smits, Saskia L. de Man, Robert A. van Campenhout, Margo J. H. Brouwer, Willem P. Niu, Jianjun Young, John A. T. Najera, Isabel Zhu, Lina Wu, Daitze Racek, Tomas Hundie, Gadissa Bedada Lin, Yong Boucher, Charles A. van de Vijver, David Haagmans, Bart L. |
author_sort | Mueller-Breckenridge, Alan J. |
collection | PubMed |
description | Chronic infection with Hepatitis B virus (HBV) is a major risk factor for the development of advanced liver disease including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The relative contribution of virological factors to disease progression has not been fully defined and tools aiding the deconvolution of complex patient virus profiles is an unmet clinical need. Variable viral mutant signatures develop within individual patients due to the low-fidelity replication of the viral polymerase creating ‘quasispecies’ populations. Here we present the first comprehensive survey of the diversity of HBV quasispecies through ultra-deep sequencing of the complete HBV genome across two distinct European and Asian patient populations. Seroconversion to the HBV e antigen (HBeAg) represents a critical clinical waymark in infected individuals. Using a machine learning approach, a model was developed to determine the viral variants that accurately classify HBeAg status. Serial surveys of patient quasispecies populations and advanced analytics will facilitate clinical decision support for chronic HBV infection and direct therapeutic strategies through improved patient stratification. |
format | Online Article Text |
id | pubmed-6906359 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-69063592019-12-13 Machine-learning based patient classification using Hepatitis B virus full-length genome quasispecies from Asian and European cohorts Mueller-Breckenridge, Alan J. Garcia-Alcalde, Fernando Wildum, Steffen Smits, Saskia L. de Man, Robert A. van Campenhout, Margo J. H. Brouwer, Willem P. Niu, Jianjun Young, John A. T. Najera, Isabel Zhu, Lina Wu, Daitze Racek, Tomas Hundie, Gadissa Bedada Lin, Yong Boucher, Charles A. van de Vijver, David Haagmans, Bart L. Sci Rep Article Chronic infection with Hepatitis B virus (HBV) is a major risk factor for the development of advanced liver disease including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The relative contribution of virological factors to disease progression has not been fully defined and tools aiding the deconvolution of complex patient virus profiles is an unmet clinical need. Variable viral mutant signatures develop within individual patients due to the low-fidelity replication of the viral polymerase creating ‘quasispecies’ populations. Here we present the first comprehensive survey of the diversity of HBV quasispecies through ultra-deep sequencing of the complete HBV genome across two distinct European and Asian patient populations. Seroconversion to the HBV e antigen (HBeAg) represents a critical clinical waymark in infected individuals. Using a machine learning approach, a model was developed to determine the viral variants that accurately classify HBeAg status. Serial surveys of patient quasispecies populations and advanced analytics will facilitate clinical decision support for chronic HBV infection and direct therapeutic strategies through improved patient stratification. Nature Publishing Group UK 2019-12-11 /pmc/articles/PMC6906359/ /pubmed/31827222 http://dx.doi.org/10.1038/s41598-019-55445-8 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Mueller-Breckenridge, Alan J. Garcia-Alcalde, Fernando Wildum, Steffen Smits, Saskia L. de Man, Robert A. van Campenhout, Margo J. H. Brouwer, Willem P. Niu, Jianjun Young, John A. T. Najera, Isabel Zhu, Lina Wu, Daitze Racek, Tomas Hundie, Gadissa Bedada Lin, Yong Boucher, Charles A. van de Vijver, David Haagmans, Bart L. Machine-learning based patient classification using Hepatitis B virus full-length genome quasispecies from Asian and European cohorts |
title | Machine-learning based patient classification using Hepatitis B virus full-length genome quasispecies from Asian and European cohorts |
title_full | Machine-learning based patient classification using Hepatitis B virus full-length genome quasispecies from Asian and European cohorts |
title_fullStr | Machine-learning based patient classification using Hepatitis B virus full-length genome quasispecies from Asian and European cohorts |
title_full_unstemmed | Machine-learning based patient classification using Hepatitis B virus full-length genome quasispecies from Asian and European cohorts |
title_short | Machine-learning based patient classification using Hepatitis B virus full-length genome quasispecies from Asian and European cohorts |
title_sort | machine-learning based patient classification using hepatitis b virus full-length genome quasispecies from asian and european cohorts |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906359/ https://www.ncbi.nlm.nih.gov/pubmed/31827222 http://dx.doi.org/10.1038/s41598-019-55445-8 |
work_keys_str_mv | AT muellerbreckenridgealanj machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts AT garciaalcaldefernando machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts AT wildumsteffen machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts AT smitssaskial machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts AT demanroberta machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts AT vancampenhoutmargojh machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts AT brouwerwillemp machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts AT niujianjun machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts AT youngjohnat machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts AT najeraisabel machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts AT zhulina machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts AT wudaitze machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts AT racektomas machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts AT hundiegadissabedada machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts AT linyong machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts AT bouchercharlesa machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts AT vandevijverdavid machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts AT haagmansbartl machinelearningbasedpatientclassificationusinghepatitisbvirusfulllengthgenomequasispeciesfromasianandeuropeancohorts |