Cargando…

Acyl radical to rhodacycle addition and cyclization relay to access butterfly flavylium fluorophores

Transition metal-catalyzed C–H activation and radical reactions are two versatile strategies to construct diverse organic skeletons. Here we show the construction of a class of flavylium fluorophores via the merge of radical chemistry and C–H activation starting from (hetero)aryl ketones and alkynes...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Jiangliang, Zhang, Yuming, Li, Jian, Zhu, Lei, Lan, Yu, You, Jingsong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906420/
https://www.ncbi.nlm.nih.gov/pubmed/31827100
http://dx.doi.org/10.1038/s41467-019-13611-6
Descripción
Sumario:Transition metal-catalyzed C–H activation and radical reactions are two versatile strategies to construct diverse organic skeletons. Here we show the construction of a class of flavylium fluorophores via the merge of radical chemistry and C–H activation starting from (hetero)aryl ketones and alkynes. This protocol is not only applicable to aryl ketones but also to heteroaryl ketones such as thiophene, benzothiophene and benzofuran, thus leading to structural diversity. Mechanism studies, including control experiments, intermediate separation, radical trapping, EPR and ESI-HRMS experiments, demonstrate that the key step lies in the addition of the acyl radical generated by the copper-catalyzed C–C bond cleavage of aryl ketone to the rhodacycle formed via the C–H activation of aryl ketone. The flavylium fluorophores feature butterfly symmetrical configuration, nearly planar skeleton and delocalized positive charge, and exhibit intriguing photophysical properties, such as tunable absorption and emission wavelengths and high quantum yields.