Cargando…
Time-resolved evaluation of compound repositioning predictions on a text-mined knowledge network
BACKGROUND: Computational compound repositioning has the potential for identifying new uses for existing drugs, and new algorithms and data source aggregation strategies provide ever-improving results via in silico metrics. However, even with these advances, the number of compounds successfully repo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6907279/ https://www.ncbi.nlm.nih.gov/pubmed/31829175 http://dx.doi.org/10.1186/s12859-019-3297-0 |
_version_ | 1783478520003952640 |
---|---|
author | Mayers, Michael Li, Tong Shu Queralt-Rosinach, Núria Su, Andrew I. |
author_facet | Mayers, Michael Li, Tong Shu Queralt-Rosinach, Núria Su, Andrew I. |
author_sort | Mayers, Michael |
collection | PubMed |
description | BACKGROUND: Computational compound repositioning has the potential for identifying new uses for existing drugs, and new algorithms and data source aggregation strategies provide ever-improving results via in silico metrics. However, even with these advances, the number of compounds successfully repositioned via computational screening remains low. New strategies for algorithm evaluation that more accurately reflect the repositioning potential of a compound could provide a better target for future optimizations. RESULTS: Using a text-mined database, we applied a previously described network-based computational repositioning algorithm, yielding strong results via cross-validation, averaging 0.95 AUROC on test-set indications. However, to better approximate a real-world scenario, we built a time-resolved evaluation framework. At various time points, we built networks corresponding to prior knowledge for use as a training set, and then predicted on a test set comprised of indications that were subsequently described. This framework showed a marked reduction in performance, peaking in performance metrics with the 1985 network at an AUROC of .797. Examining performance reductions due to removal of specific types of relationships highlighted the importance of drug-drug and disease-disease similarity metrics. Using data from future timepoints, we demonstrate that further acquisition of these kinds of data may help improve computational results. CONCLUSIONS: Evaluating a repositioning algorithm using indications unknown to input network better tunes its ability to find emerging drug indications, rather than finding those which have been randomly withheld. Focusing efforts on improving algorithmic performance in a time-resolved paradigm may further improve computational repositioning predictions. |
format | Online Article Text |
id | pubmed-6907279 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-69072792019-12-19 Time-resolved evaluation of compound repositioning predictions on a text-mined knowledge network Mayers, Michael Li, Tong Shu Queralt-Rosinach, Núria Su, Andrew I. BMC Bioinformatics Research Article BACKGROUND: Computational compound repositioning has the potential for identifying new uses for existing drugs, and new algorithms and data source aggregation strategies provide ever-improving results via in silico metrics. However, even with these advances, the number of compounds successfully repositioned via computational screening remains low. New strategies for algorithm evaluation that more accurately reflect the repositioning potential of a compound could provide a better target for future optimizations. RESULTS: Using a text-mined database, we applied a previously described network-based computational repositioning algorithm, yielding strong results via cross-validation, averaging 0.95 AUROC on test-set indications. However, to better approximate a real-world scenario, we built a time-resolved evaluation framework. At various time points, we built networks corresponding to prior knowledge for use as a training set, and then predicted on a test set comprised of indications that were subsequently described. This framework showed a marked reduction in performance, peaking in performance metrics with the 1985 network at an AUROC of .797. Examining performance reductions due to removal of specific types of relationships highlighted the importance of drug-drug and disease-disease similarity metrics. Using data from future timepoints, we demonstrate that further acquisition of these kinds of data may help improve computational results. CONCLUSIONS: Evaluating a repositioning algorithm using indications unknown to input network better tunes its ability to find emerging drug indications, rather than finding those which have been randomly withheld. Focusing efforts on improving algorithmic performance in a time-resolved paradigm may further improve computational repositioning predictions. BioMed Central 2019-12-11 /pmc/articles/PMC6907279/ /pubmed/31829175 http://dx.doi.org/10.1186/s12859-019-3297-0 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Mayers, Michael Li, Tong Shu Queralt-Rosinach, Núria Su, Andrew I. Time-resolved evaluation of compound repositioning predictions on a text-mined knowledge network |
title | Time-resolved evaluation of compound repositioning predictions on a text-mined knowledge network |
title_full | Time-resolved evaluation of compound repositioning predictions on a text-mined knowledge network |
title_fullStr | Time-resolved evaluation of compound repositioning predictions on a text-mined knowledge network |
title_full_unstemmed | Time-resolved evaluation of compound repositioning predictions on a text-mined knowledge network |
title_short | Time-resolved evaluation of compound repositioning predictions on a text-mined knowledge network |
title_sort | time-resolved evaluation of compound repositioning predictions on a text-mined knowledge network |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6907279/ https://www.ncbi.nlm.nih.gov/pubmed/31829175 http://dx.doi.org/10.1186/s12859-019-3297-0 |
work_keys_str_mv | AT mayersmichael timeresolvedevaluationofcompoundrepositioningpredictionsonatextminedknowledgenetwork AT litongshu timeresolvedevaluationofcompoundrepositioningpredictionsonatextminedknowledgenetwork AT queraltrosinachnuria timeresolvedevaluationofcompoundrepositioningpredictionsonatextminedknowledgenetwork AT suandrewi timeresolvedevaluationofcompoundrepositioningpredictionsonatextminedknowledgenetwork |