Cargando…
Time-resolved evaluation of compound repositioning predictions on a text-mined knowledge network
BACKGROUND: Computational compound repositioning has the potential for identifying new uses for existing drugs, and new algorithms and data source aggregation strategies provide ever-improving results via in silico metrics. However, even with these advances, the number of compounds successfully repo...
Autores principales: | Mayers, Michael, Li, Tong Shu, Queralt-Rosinach, Núria, Su, Andrew I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6907279/ https://www.ncbi.nlm.nih.gov/pubmed/31829175 http://dx.doi.org/10.1186/s12859-019-3297-0 |
Ejemplares similares
-
Structured reviews for data and knowledge-driven research
por: Queralt-Rosinach, Núria, et al.
Publicado: (2020) -
HeTDR: Drug repositioning based on heterogeneous networks and text mining
por: Jin, Shuting, et al.
Publicado: (2021) -
Adopting Text Mining on Rehabilitation Therapy Repositioning for Stroke
por: Meng, Guilin, et al.
Publicado: (2019) -
Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research
por: Bravo, Àlex, et al.
Publicado: (2015) -
A proof-of-concept study of extracting patient histories for rare/intractable diseases from social media
por: Yamaguchi, Atsuko, et al.
Publicado: (2020)