Cargando…

Structure and Drug Resistance of the Plasmodium falciparum Transporter PfCRT

The emergence and spread of drug-resistant Plasmodium falciparum impedes global efforts to control and eliminate malaria. For decades, treatment relied on chloroquine (CQ), a safe and affordable 4-aminoquinoline that was highly effective against intra-erythrocytic asexual blood-stage parasites, unti...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Jonathan, Tan, Yong Zi, Wicht, Kathryn J., Erramilli, Satchal K., Dhingra, Satish K., Okombo, John, Vendome, Jeremie, Hagenah, Laura M., Giacometti, Sabrina I., Warren, Audrey L., Nosol, Kamil, Roepe, Paul D., Potter, Clinton S., Carragher, Bridget, Kossiakoff, Anthony A., Quick, Matthias, Fidock, David A., Mancia, Filippo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6911266/
https://www.ncbi.nlm.nih.gov/pubmed/31776516
http://dx.doi.org/10.1038/s41586-019-1795-x
_version_ 1783479232006979584
author Kim, Jonathan
Tan, Yong Zi
Wicht, Kathryn J.
Erramilli, Satchal K.
Dhingra, Satish K.
Okombo, John
Vendome, Jeremie
Hagenah, Laura M.
Giacometti, Sabrina I.
Warren, Audrey L.
Nosol, Kamil
Roepe, Paul D.
Potter, Clinton S.
Carragher, Bridget
Kossiakoff, Anthony A.
Quick, Matthias
Fidock, David A.
Mancia, Filippo
author_facet Kim, Jonathan
Tan, Yong Zi
Wicht, Kathryn J.
Erramilli, Satchal K.
Dhingra, Satish K.
Okombo, John
Vendome, Jeremie
Hagenah, Laura M.
Giacometti, Sabrina I.
Warren, Audrey L.
Nosol, Kamil
Roepe, Paul D.
Potter, Clinton S.
Carragher, Bridget
Kossiakoff, Anthony A.
Quick, Matthias
Fidock, David A.
Mancia, Filippo
author_sort Kim, Jonathan
collection PubMed
description The emergence and spread of drug-resistant Plasmodium falciparum impedes global efforts to control and eliminate malaria. For decades, treatment relied on chloroquine (CQ), a safe and affordable 4-aminoquinoline that was highly effective against intra-erythrocytic asexual blood-stage parasites, until resistance arose in Southeast Asia and South America and spread worldwide(1). Clinical resistance to the chemically-related current first-line combination drug piperaquine (PPQ) has now emerged regionally, thwarting its efficacy(2). Resistance to CQ and PPQ has been associated with distinct sets of point mutations in the P. falciparum chloroquine resistance transporter PfCRT, a 49 kDa member of the drug/metabolite transporter (DMT) superfamily that traverses the membrane of the parasite’s acidic digestive vacuole (DV)(3–9). Here we present the 3.2 Å structure of the PfCRT isoform from CQ-resistant, PPQ-sensitive South American 7G8 parasites, using single-particle cryo-electron microscopy (cryo-EM) and fragment antigen-binding (Fab) technology. Mutations contributing to CQ and PPQ resistance localize primarily to moderately-conserved sites on distinct helices lining a central negatively-charged cavity, implicating this as the principal site of interaction with positively-charged CQ and PPQ. Binding and transport studies reveal that the 7G8 isoform binds both drugs with comparable affinities, with these drugs being mutually competitive. This isoform transports CQ in a membrane potential- and pH-dependent manner, consistent with an active efflux mechanism driving CQ resistance(5), but does not transport PPQ. Functional studies on the newly emerging PfCRT F145I and C350R mutations, associated with decreased PPQ susceptibility in Asia and South America respectively(6,9), reveal their ability to mediate PPQ transport in 7G8 variant proteins and to confer resistance in gene-edited parasites. Structural, functional and in silico analyses suggest distinct mechanistic features mediating CQ and PPQ resistance in PfCRT variants. These data provide the first atomic-level insights into the molecular mechanism of this key mediator of antimalarial treatment failures.
format Online
Article
Text
id pubmed-6911266
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-69112662020-05-27 Structure and Drug Resistance of the Plasmodium falciparum Transporter PfCRT Kim, Jonathan Tan, Yong Zi Wicht, Kathryn J. Erramilli, Satchal K. Dhingra, Satish K. Okombo, John Vendome, Jeremie Hagenah, Laura M. Giacometti, Sabrina I. Warren, Audrey L. Nosol, Kamil Roepe, Paul D. Potter, Clinton S. Carragher, Bridget Kossiakoff, Anthony A. Quick, Matthias Fidock, David A. Mancia, Filippo Nature Article The emergence and spread of drug-resistant Plasmodium falciparum impedes global efforts to control and eliminate malaria. For decades, treatment relied on chloroquine (CQ), a safe and affordable 4-aminoquinoline that was highly effective against intra-erythrocytic asexual blood-stage parasites, until resistance arose in Southeast Asia and South America and spread worldwide(1). Clinical resistance to the chemically-related current first-line combination drug piperaquine (PPQ) has now emerged regionally, thwarting its efficacy(2). Resistance to CQ and PPQ has been associated with distinct sets of point mutations in the P. falciparum chloroquine resistance transporter PfCRT, a 49 kDa member of the drug/metabolite transporter (DMT) superfamily that traverses the membrane of the parasite’s acidic digestive vacuole (DV)(3–9). Here we present the 3.2 Å structure of the PfCRT isoform from CQ-resistant, PPQ-sensitive South American 7G8 parasites, using single-particle cryo-electron microscopy (cryo-EM) and fragment antigen-binding (Fab) technology. Mutations contributing to CQ and PPQ resistance localize primarily to moderately-conserved sites on distinct helices lining a central negatively-charged cavity, implicating this as the principal site of interaction with positively-charged CQ and PPQ. Binding and transport studies reveal that the 7G8 isoform binds both drugs with comparable affinities, with these drugs being mutually competitive. This isoform transports CQ in a membrane potential- and pH-dependent manner, consistent with an active efflux mechanism driving CQ resistance(5), but does not transport PPQ. Functional studies on the newly emerging PfCRT F145I and C350R mutations, associated with decreased PPQ susceptibility in Asia and South America respectively(6,9), reveal their ability to mediate PPQ transport in 7G8 variant proteins and to confer resistance in gene-edited parasites. Structural, functional and in silico analyses suggest distinct mechanistic features mediating CQ and PPQ resistance in PfCRT variants. These data provide the first atomic-level insights into the molecular mechanism of this key mediator of antimalarial treatment failures. 2019-11-27 2019-12 /pmc/articles/PMC6911266/ /pubmed/31776516 http://dx.doi.org/10.1038/s41586-019-1795-x Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Kim, Jonathan
Tan, Yong Zi
Wicht, Kathryn J.
Erramilli, Satchal K.
Dhingra, Satish K.
Okombo, John
Vendome, Jeremie
Hagenah, Laura M.
Giacometti, Sabrina I.
Warren, Audrey L.
Nosol, Kamil
Roepe, Paul D.
Potter, Clinton S.
Carragher, Bridget
Kossiakoff, Anthony A.
Quick, Matthias
Fidock, David A.
Mancia, Filippo
Structure and Drug Resistance of the Plasmodium falciparum Transporter PfCRT
title Structure and Drug Resistance of the Plasmodium falciparum Transporter PfCRT
title_full Structure and Drug Resistance of the Plasmodium falciparum Transporter PfCRT
title_fullStr Structure and Drug Resistance of the Plasmodium falciparum Transporter PfCRT
title_full_unstemmed Structure and Drug Resistance of the Plasmodium falciparum Transporter PfCRT
title_short Structure and Drug Resistance of the Plasmodium falciparum Transporter PfCRT
title_sort structure and drug resistance of the plasmodium falciparum transporter pfcrt
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6911266/
https://www.ncbi.nlm.nih.gov/pubmed/31776516
http://dx.doi.org/10.1038/s41586-019-1795-x
work_keys_str_mv AT kimjonathan structureanddrugresistanceoftheplasmodiumfalciparumtransporterpfcrt
AT tanyongzi structureanddrugresistanceoftheplasmodiumfalciparumtransporterpfcrt
AT wichtkathrynj structureanddrugresistanceoftheplasmodiumfalciparumtransporterpfcrt
AT erramillisatchalk structureanddrugresistanceoftheplasmodiumfalciparumtransporterpfcrt
AT dhingrasatishk structureanddrugresistanceoftheplasmodiumfalciparumtransporterpfcrt
AT okombojohn structureanddrugresistanceoftheplasmodiumfalciparumtransporterpfcrt
AT vendomejeremie structureanddrugresistanceoftheplasmodiumfalciparumtransporterpfcrt
AT hagenahlauram structureanddrugresistanceoftheplasmodiumfalciparumtransporterpfcrt
AT giacomettisabrinai structureanddrugresistanceoftheplasmodiumfalciparumtransporterpfcrt
AT warrenaudreyl structureanddrugresistanceoftheplasmodiumfalciparumtransporterpfcrt
AT nosolkamil structureanddrugresistanceoftheplasmodiumfalciparumtransporterpfcrt
AT roepepauld structureanddrugresistanceoftheplasmodiumfalciparumtransporterpfcrt
AT potterclintons structureanddrugresistanceoftheplasmodiumfalciparumtransporterpfcrt
AT carragherbridget structureanddrugresistanceoftheplasmodiumfalciparumtransporterpfcrt
AT kossiakoffanthonya structureanddrugresistanceoftheplasmodiumfalciparumtransporterpfcrt
AT quickmatthias structureanddrugresistanceoftheplasmodiumfalciparumtransporterpfcrt
AT fidockdavida structureanddrugresistanceoftheplasmodiumfalciparumtransporterpfcrt
AT manciafilippo structureanddrugresistanceoftheplasmodiumfalciparumtransporterpfcrt