Cargando…
Lumen Expansion Facilitates Epiblast-Primitive Endoderm Fate Specification during Mouse Blastocyst Formation
Epithelial tissues typically form lumina. In mammalian blastocysts, in which the first embryonic lumen forms, many studies have investigated how the cell lineages are specified through genetics and signaling, whereas potential roles of the fluid lumen have yet to be investigated. We discover that in...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912163/ https://www.ncbi.nlm.nih.gov/pubmed/31735667 http://dx.doi.org/10.1016/j.devcel.2019.10.011 |
_version_ | 1783479391266799616 |
---|---|
author | Ryan, Allyson Quinn Chan, Chii Jou Graner, François Hiiragi, Takashi |
author_facet | Ryan, Allyson Quinn Chan, Chii Jou Graner, François Hiiragi, Takashi |
author_sort | Ryan, Allyson Quinn |
collection | PubMed |
description | Epithelial tissues typically form lumina. In mammalian blastocysts, in which the first embryonic lumen forms, many studies have investigated how the cell lineages are specified through genetics and signaling, whereas potential roles of the fluid lumen have yet to be investigated. We discover that in mouse pre-implantation embryos at the onset of lumen formation, cytoplasmic vesicles are secreted into intercellular space. The segregation of epiblast and primitive endoderm directly follows lumen coalescence. Notably, pharmacological and biophysical perturbation of lumen expansion impairs the specification and spatial segregation of primitive endoderm cells within the blastocyst. Luminal deposition of FGF4 expedites fate specification and partially rescues the reduced specification in blastocysts with smaller cavities. Combined, our results suggest that blastocyst lumen expansion plays a critical role in guiding cell fate specification and positioning, possibly mediated by luminally deposited FGF4. Lumen expansion may provide a general mechanism for tissue pattern formation. |
format | Online Article Text |
id | pubmed-6912163 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-69121632019-12-23 Lumen Expansion Facilitates Epiblast-Primitive Endoderm Fate Specification during Mouse Blastocyst Formation Ryan, Allyson Quinn Chan, Chii Jou Graner, François Hiiragi, Takashi Dev Cell Article Epithelial tissues typically form lumina. In mammalian blastocysts, in which the first embryonic lumen forms, many studies have investigated how the cell lineages are specified through genetics and signaling, whereas potential roles of the fluid lumen have yet to be investigated. We discover that in mouse pre-implantation embryos at the onset of lumen formation, cytoplasmic vesicles are secreted into intercellular space. The segregation of epiblast and primitive endoderm directly follows lumen coalescence. Notably, pharmacological and biophysical perturbation of lumen expansion impairs the specification and spatial segregation of primitive endoderm cells within the blastocyst. Luminal deposition of FGF4 expedites fate specification and partially rescues the reduced specification in blastocysts with smaller cavities. Combined, our results suggest that blastocyst lumen expansion plays a critical role in guiding cell fate specification and positioning, possibly mediated by luminally deposited FGF4. Lumen expansion may provide a general mechanism for tissue pattern formation. Cell Press 2019-12-16 /pmc/articles/PMC6912163/ /pubmed/31735667 http://dx.doi.org/10.1016/j.devcel.2019.10.011 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ryan, Allyson Quinn Chan, Chii Jou Graner, François Hiiragi, Takashi Lumen Expansion Facilitates Epiblast-Primitive Endoderm Fate Specification during Mouse Blastocyst Formation |
title | Lumen Expansion Facilitates Epiblast-Primitive Endoderm Fate Specification during Mouse Blastocyst Formation |
title_full | Lumen Expansion Facilitates Epiblast-Primitive Endoderm Fate Specification during Mouse Blastocyst Formation |
title_fullStr | Lumen Expansion Facilitates Epiblast-Primitive Endoderm Fate Specification during Mouse Blastocyst Formation |
title_full_unstemmed | Lumen Expansion Facilitates Epiblast-Primitive Endoderm Fate Specification during Mouse Blastocyst Formation |
title_short | Lumen Expansion Facilitates Epiblast-Primitive Endoderm Fate Specification during Mouse Blastocyst Formation |
title_sort | lumen expansion facilitates epiblast-primitive endoderm fate specification during mouse blastocyst formation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912163/ https://www.ncbi.nlm.nih.gov/pubmed/31735667 http://dx.doi.org/10.1016/j.devcel.2019.10.011 |
work_keys_str_mv | AT ryanallysonquinn lumenexpansionfacilitatesepiblastprimitiveendodermfatespecificationduringmouseblastocystformation AT chanchiijou lumenexpansionfacilitatesepiblastprimitiveendodermfatespecificationduringmouseblastocystformation AT granerfrancois lumenexpansionfacilitatesepiblastprimitiveendodermfatespecificationduringmouseblastocystformation AT hiiragitakashi lumenexpansionfacilitatesepiblastprimitiveendodermfatespecificationduringmouseblastocystformation |