Cargando…

Alpha-hemolysin of uropathogenic Escherichia coli induces GM-CSF-mediated acute kidney injury

Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs), inducing acute pyelonephritis and may result in permanent renal scarring and failure. Alpha-hemolysin (HlyA), a key UPEC toxin, causes serious tissue damage; however, the mechanism through which HlyA induc...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Changying, Li, Qianqian, Lv, Junqiang, Sun, Xuan, Cao, Yang, Yu, Kaiyuan, Miao, Chunhui, Zhang, Zhi-Song, Yao, Zhi, Wang, Quan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6914670/
https://www.ncbi.nlm.nih.gov/pubmed/31719643
http://dx.doi.org/10.1038/s41385-019-0225-6
Descripción
Sumario:Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs), inducing acute pyelonephritis and may result in permanent renal scarring and failure. Alpha-hemolysin (HlyA), a key UPEC toxin, causes serious tissue damage; however, the mechanism through which HlyA induces kidney injury remains unclear. In the present study, granulocyte-macrophage colony-stimulating factor (GM-CSF) secreted by renal epithelial cells was upregulated by HlyA in vitro and in vivo, which induced M1 macrophage accumulation in kidney, and ADAM10 was found involved in HlyA-induced GM-CSF. Macrophage elimination or GM-CSF neutralization protected against acute kidney injury in mice, and increased GM-CSF was detected in urine of patients infected by hlyA-positive UPEC. In addition, HlyA was found to promote UPEC invasion into renal epithelial cells by interacting with Nectin-2 in vitro. However, HlyA did not affect bacterial titers during acute kidney infections, and HlyA-induced invasion did not contribute to GM-CSF upregulation in vitro, which indicate that HlyA-induced GM-CSF is independent of bacteria invasion. The role of GM-CSF in HlyA-mediated kidney injury may lead to novel strategies to treat acute pyelonephritis.