Cargando…

STED Direct Laser Writing of 45 nm Width Nanowire

Controlled fabrication of 45 nm width nanowire using simulated emission depletion (STED) direct laser writing with a rod-shape effective focus spot is presented. In conventional STED direct laser writing, normally a donut-shaped depletion focus is used, and the minimum linewidth is restricted to 55...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Xiaolong, Li, Tianlong, Zhang, Jia, Wang, Zhenlong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915467/
https://www.ncbi.nlm.nih.gov/pubmed/31661815
http://dx.doi.org/10.3390/mi10110726
Descripción
Sumario:Controlled fabrication of 45 nm width nanowire using simulated emission depletion (STED) direct laser writing with a rod-shape effective focus spot is presented. In conventional STED direct laser writing, normally a donut-shaped depletion focus is used, and the minimum linewidth is restricted to 55 nm. In this work, we push this limit to sub-50 nm dimension with a rod-shape effective focus spot, which is the combination of a Gaussian excitation focus and twin-oval depletion focus. Effects of photoinitiator type, excitation laser power, and depletion laser power on the width of the nanowire are explored, respectively. Single nanowire with 45 nm width is obtained, which is λ/18 of excitation wavelength and the minimum linewidth in pentaerythritol triacrylate (PETA) photoresist. Our result accelerates the progress of achievable linewidth reduction in STED direct laser writing.