Cargando…
Direct single-molecule quantification reveals unexpectedly high mechanical stability of vinculin—talin/α-catenin linkages
The vinculin-mediated mechanosensing requires establishment of stable mechanical linkages between vinculin to integrin at focal adhesions and to cadherins at adherens junctions through associations with the respective adaptor proteins talin and α-catenin. However, the mechanical stability of these c...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920023/ https://www.ncbi.nlm.nih.gov/pubmed/31897422 http://dx.doi.org/10.1126/sciadv.aav2720 |
Sumario: | The vinculin-mediated mechanosensing requires establishment of stable mechanical linkages between vinculin to integrin at focal adhesions and to cadherins at adherens junctions through associations with the respective adaptor proteins talin and α-catenin. However, the mechanical stability of these critical vinculin linkages has yet to be determined. Here, we developed a single-molecule detector assay to provide direct quantification of the mechanical lifetime of vinculin association with the vinculin binding sites in both talin and α-catenin, which reveals a surprisingly high mechanical stability of the vinculin—talin and vinculin—α-catenin interfaces that have a lifetime of >1000 s at forces up to 10 pN and can last for seconds to tens of seconds at 15 to 25 pN. Our results suggest that these force-bearing intermolecular interfaces provide sufficient mechanical stability to support the vinculin-mediated mechanotransduction at cell-matrix and cell-cell adhesions. |
---|