Cargando…

MYCN and PRC1 cooperatively repress docosahexaenoic acid synthesis in neuroblastoma via ELOVL2

BACKGROUND: The MYCN amplification is a defining hallmark of high-risk neuroblastoma. Due to irregular oncogenes orchestration, tumor cells exhibit distinct fatty acid metabolic features from non-tumor cells. However, the function of MYCN in neuroblastoma fatty acid metabolism reprogramming remains...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Yi, Yang, Jie, Ma, Yawen, Yao, Tengteng, Chen, Xingyu, Ge, Shengfang, Wang, Lihua, Fan, Xianqun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6923955/
https://www.ncbi.nlm.nih.gov/pubmed/31856871
http://dx.doi.org/10.1186/s13046-019-1492-5
Descripción
Sumario:BACKGROUND: The MYCN amplification is a defining hallmark of high-risk neuroblastoma. Due to irregular oncogenes orchestration, tumor cells exhibit distinct fatty acid metabolic features from non-tumor cells. However, the function of MYCN in neuroblastoma fatty acid metabolism reprogramming remains unknown. METHODS: Gas Chromatography-Mass Spectrometer (GC-MS) was used to find the potential target fatty acid metabolites of MYCN. Real-time PCR (RT-PCR) and clinical bioinformatics analysis was used to find the related target genes. The function of the identified target gene ELOVL2 on cell growth was detected through CCK-8 assay, Soft agar colony formation assay, flow Cytometry assay and mouse xenograft. Chromatin immunoprecipitation (ChIP) and Immunoprecipitation-Mass Spectrometer (IP-MS) further identified the target gene and the co-repressor of MYCN. RESULTS: The fatty acid profile of MYCN-depleted neuroblastoma cells identified docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid with anti-tumor activity, significantly increased after MYCN depletion. Compared with MYCN single-copy neuroblastoma cells, DHA level was significantly lower in MYCN-amplified neuroblastoma cells. RT-PCR and clinical bioinformatics analysis discovered that MYCN interfered DHA accumulation via ELOVL fatty acid elongase 2 (ELOVL2) which is a rate-limiting enzyme of cellular DHA synthesis. Enforced ELOVL2 expression in MYCN-amplified neuroblastoma cells led to decreased cell growth and counteracted the growth-promoting effect of MYCN overexpression both in vitro and vivo. ELOVL2 Knockdown showed the opposite effect in MYCN single-copy neuroblastoma cells. In primary neuroblastoma, high ELOVL2 transcription correlated with favorable clinical tumor biology and patient survival. The mechanism of MYCN-mediated ELOVL2 inhibition contributed to epigenetic regulation. MYCN recruited PRC1 (Polycomb repressive complex 1), catalysed H2AK119ub (histone 2A lysine 119 monoubiquitination) and inhibited subsequent ELOVL2 transcription. CONCLUSIONS: The tumor suppressive properties of DHA and ELOVL2 are repressed by the MYCN and PRC1 jointly, which suggests a new epigenetic mechanism of MYCN-mediated fatty acid regulation and indicates PRC1 inhibition as a potential novel strategy to activate ELOVL2 suppressive functions.