Cargando…

The Urinary Excretion of Uromodulin is Regulated by the Potassium Channel ROMK

Uromodulin, the most abundant protein in normal urine, is produced by cells lining the thick ascending limb (TAL) of the loop of Henle. Uromodulin regulates the activity of the potassium channel ROMK in TAL cells. Common variants in KCNJ1, the gene encoding ROMK, are associated with urinary levels o...

Descripción completa

Detalles Bibliográficos
Autores principales: Schiano, Guglielmo, Glaudemans, Bob, Olinger, Eric, Goelz, Nadine, Müller, Michael, Loffing-Cueni, Dominique, Deschenes, Georges, Loffing, Johannes, Devuyst, Olivier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925250/
https://www.ncbi.nlm.nih.gov/pubmed/31863061
http://dx.doi.org/10.1038/s41598-019-55771-x
Descripción
Sumario:Uromodulin, the most abundant protein in normal urine, is produced by cells lining the thick ascending limb (TAL) of the loop of Henle. Uromodulin regulates the activity of the potassium channel ROMK in TAL cells. Common variants in KCNJ1, the gene encoding ROMK, are associated with urinary levels of uromodulin in population studies. Here, we investigated the functional link between ROMK and uromodulin in Kcnj1 knock-out mouse models, in primary cultures of mouse TAL (mTAL) cells, and in patients with Bartter syndrome due to KCNJ1 mutations. Both global and kidney-specific Kcnj1 knock-out mice showed reduced urinary levels of uromodulin paralleled by increased levels in the kidney, compared to wild-type controls. Pharmacological inhibition and genetic deletion of ROMK in mTAL cells caused a reduction in apical uromodulin excretion, reflected by cellular accumulation. In contrast, NKCC2 inhibition showed no effect on uromodulin processing. Patients with Bartter syndrome type 2 showed reduced urinary uromodulin levels compared to age and gender matched controls. These results demonstrate that ROMK directly regulates processing and release of uromodulin by TAL cells, independently from NKCC2. They support the functional link between transport activity and uromodulin in the TAL, relevant for blood pressure control and urinary concentrating ability.