Cargando…
Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators
The type 2 ryanodine receptor (RyR2) is responsible for releasing Ca(2+) from the sarcoplasmic reticulum of cardiomyocytes, subsequently leading to muscle contraction. Here, we report 4 cryo-electron microscopy (cryo-EM) structures of porcine RyR2 bound to distinct modulators that, together with our...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926060/ https://www.ncbi.nlm.nih.gov/pubmed/31792195 http://dx.doi.org/10.1073/pnas.1914451116 |
_version_ | 1783482024919564288 |
---|---|
author | Chi, Ximin Gong, Deshun Ren, Kang Zhou, Gewei Huang, Gaoxingyu Lei, Jianlin Zhou, Qiang Yan, Nieng |
author_facet | Chi, Ximin Gong, Deshun Ren, Kang Zhou, Gewei Huang, Gaoxingyu Lei, Jianlin Zhou, Qiang Yan, Nieng |
author_sort | Chi, Ximin |
collection | PubMed |
description | The type 2 ryanodine receptor (RyR2) is responsible for releasing Ca(2+) from the sarcoplasmic reticulum of cardiomyocytes, subsequently leading to muscle contraction. Here, we report 4 cryo-electron microscopy (cryo-EM) structures of porcine RyR2 bound to distinct modulators that, together with our published structures, provide mechanistic insight into RyR2 regulation. Ca(2+) alone induces a contraction of the central domain that facilitates the dilation of the S6 bundle but is insufficient to open the pore. The small-molecule agonist PCB95 helps Ca(2+) to overcome the barrier for opening. FKBP12.6 induces a relaxation of the central domain that decouples it from the S6 bundle, stabilizing RyR2 in a closed state even in the presence of Ca(2+) and PCB95. Although the channel is open when PCB95 is replaced by caffeine and adenosine 5′-triphosphate (ATP), neither of the modulators alone can sufficiently counter the antagonistic effect to open the channel. Our study marks an important step toward mechanistic understanding of the sophisticated regulation of this key channel whose aberrant activity engenders life-threatening cardiac disorders. |
format | Online Article Text |
id | pubmed-6926060 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-69260602019-12-23 Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators Chi, Ximin Gong, Deshun Ren, Kang Zhou, Gewei Huang, Gaoxingyu Lei, Jianlin Zhou, Qiang Yan, Nieng Proc Natl Acad Sci U S A Biological Sciences The type 2 ryanodine receptor (RyR2) is responsible for releasing Ca(2+) from the sarcoplasmic reticulum of cardiomyocytes, subsequently leading to muscle contraction. Here, we report 4 cryo-electron microscopy (cryo-EM) structures of porcine RyR2 bound to distinct modulators that, together with our published structures, provide mechanistic insight into RyR2 regulation. Ca(2+) alone induces a contraction of the central domain that facilitates the dilation of the S6 bundle but is insufficient to open the pore. The small-molecule agonist PCB95 helps Ca(2+) to overcome the barrier for opening. FKBP12.6 induces a relaxation of the central domain that decouples it from the S6 bundle, stabilizing RyR2 in a closed state even in the presence of Ca(2+) and PCB95. Although the channel is open when PCB95 is replaced by caffeine and adenosine 5′-triphosphate (ATP), neither of the modulators alone can sufficiently counter the antagonistic effect to open the channel. Our study marks an important step toward mechanistic understanding of the sophisticated regulation of this key channel whose aberrant activity engenders life-threatening cardiac disorders. National Academy of Sciences 2019-12-17 2019-12-02 /pmc/articles/PMC6926060/ /pubmed/31792195 http://dx.doi.org/10.1073/pnas.1914451116 Text en Copyright © 2019 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Chi, Ximin Gong, Deshun Ren, Kang Zhou, Gewei Huang, Gaoxingyu Lei, Jianlin Zhou, Qiang Yan, Nieng Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators |
title | Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators |
title_full | Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators |
title_fullStr | Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators |
title_full_unstemmed | Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators |
title_short | Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators |
title_sort | molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6926060/ https://www.ncbi.nlm.nih.gov/pubmed/31792195 http://dx.doi.org/10.1073/pnas.1914451116 |
work_keys_str_mv | AT chiximin molecularbasisforallostericregulationofthetype2ryanodinereceptorchannelgatingbykeymodulators AT gongdeshun molecularbasisforallostericregulationofthetype2ryanodinereceptorchannelgatingbykeymodulators AT renkang molecularbasisforallostericregulationofthetype2ryanodinereceptorchannelgatingbykeymodulators AT zhougewei molecularbasisforallostericregulationofthetype2ryanodinereceptorchannelgatingbykeymodulators AT huanggaoxingyu molecularbasisforallostericregulationofthetype2ryanodinereceptorchannelgatingbykeymodulators AT leijianlin molecularbasisforallostericregulationofthetype2ryanodinereceptorchannelgatingbykeymodulators AT zhouqiang molecularbasisforallostericregulationofthetype2ryanodinereceptorchannelgatingbykeymodulators AT yannieng molecularbasisforallostericregulationofthetype2ryanodinereceptorchannelgatingbykeymodulators |