Cargando…
Drug repositioning based on individual bi-random walks on a heterogeneous network
BACKGROUND: Traditional drug research and development is high cost, time-consuming and risky. Computationally identifying new indications for existing drugs, referred as drug repositioning, greatly reduces the cost and attracts ever-increasing research interests. Many network-based methods have been...
Autores principales: | Wang, Yuehui, Guo, Maozu, Ren, Yazhou, Jia, Lianyin, Yu, Guoxian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929332/ https://www.ncbi.nlm.nih.gov/pubmed/31874623 http://dx.doi.org/10.1186/s12859-019-3117-6 |
Ejemplares similares
-
BRWLDA: bi-random walks for predicting lncRNA-disease associations
por: Yu, Guoxian, et al.
Publicado: (2017) -
Protein-Protein Interactions Prediction Using a Novel Local Conjoint Triad Descriptor of Amino Acid Sequences
por: Wang, Jun, et al.
Publicado: (2017) -
Computational drug repositioning using meta-path-based semantic network analysis
por: Tian, Zhen, et al.
Publicado: (2018) -
Computational drug repositioning through heterogeneous network clustering
por: Wu, Chao, et al.
Publicado: (2013) -
Inferring microRNA-disease association by hybrid recommendation algorithm and unbalanced bi-random walk on heterogeneous network
por: Yu, Dong-Ling, et al.
Publicado: (2019)