Cargando…
Melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the NOTCH3/NF-κB pathway
The pathophysiological mechanism of white matter hyperintensities of cerebral small vessel disease (CSVD) includes an impaired blood-brain barrier (BBB) with increased permeability. Neuroinflammation likely contributes to the disruption of the BBB in CSVD. Therefore, understanding the molecular mech...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6932927/ https://www.ncbi.nlm.nih.gov/pubmed/31811815 http://dx.doi.org/10.18632/aging.102537 |
_version_ | 1783483109213208576 |
---|---|
author | Qin, Weiwei Li, Jing Zhu, Rongjia Gao, Suhua Fan, Junfen Xia, Mingrong Zhao, Robert Chunhua Zhang, Jiewen |
author_facet | Qin, Weiwei Li, Jing Zhu, Rongjia Gao, Suhua Fan, Junfen Xia, Mingrong Zhao, Robert Chunhua Zhang, Jiewen |
author_sort | Qin, Weiwei |
collection | PubMed |
description | The pathophysiological mechanism of white matter hyperintensities of cerebral small vessel disease (CSVD) includes an impaired blood-brain barrier (BBB) with increased permeability. Neuroinflammation likely contributes to the disruption of the BBB in CSVD. Therefore, understanding the molecular mechanism of how neuroinflammation causes BBB damage is essential to preventing BBB disruption in CSVD. Matrix metalloproteinase 9 (MMP-9) contributes to BBB damage in neuroinflammatory diseases. In this study, we observed that interleukin-1β (IL-1β)-induced MMP-9 secretion in pericytes increased BBB permeability to sodium fluorescein (Na-F) by damaging the disruption of VE-cadherin, occludin, claudin-5, and zonula occludin-1 (ZO-1). Melatonin reduced BBB permeability to Na-F and inhibited the disruption of the adherens and tight junction proteins. Melatonin also downregulated MMP-9 and upregulated tissue inhibitor of metalloproteinases 1 (TIMP-1) gene expression, which decreased the MMP-9/TIMP-1 ratio. In addition, nuclear translocation of NF-κB/p65 induced by IL-1β in pericytes upregulated MMP-9 expression, which was inhibited by the NF-κB inhibitor PDTC. However, the NOTCH3 inhibitor DAPT significantly inhibited NF-κB/p65 translocation to the nucleus, while melatonin in combination with DAPT significantly prevented NF-κB/p65 translocation than DAPT alone. Our results suggest that melatonin reduced MMP-9-induced permeability of the BBB. Melatonin reduced MMP-9 expression and activity, which was induced by IL-1β through the regulation of the NOTCH3/NF-κB signaling pathway in pericytes, suggesting that pericytes regulate BBB integrity and function. |
format | Online Article Text |
id | pubmed-6932927 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Impact Journals |
record_format | MEDLINE/PubMed |
spelling | pubmed-69329272020-01-03 Melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the NOTCH3/NF-κB pathway Qin, Weiwei Li, Jing Zhu, Rongjia Gao, Suhua Fan, Junfen Xia, Mingrong Zhao, Robert Chunhua Zhang, Jiewen Aging (Albany NY) Research Paper The pathophysiological mechanism of white matter hyperintensities of cerebral small vessel disease (CSVD) includes an impaired blood-brain barrier (BBB) with increased permeability. Neuroinflammation likely contributes to the disruption of the BBB in CSVD. Therefore, understanding the molecular mechanism of how neuroinflammation causes BBB damage is essential to preventing BBB disruption in CSVD. Matrix metalloproteinase 9 (MMP-9) contributes to BBB damage in neuroinflammatory diseases. In this study, we observed that interleukin-1β (IL-1β)-induced MMP-9 secretion in pericytes increased BBB permeability to sodium fluorescein (Na-F) by damaging the disruption of VE-cadherin, occludin, claudin-5, and zonula occludin-1 (ZO-1). Melatonin reduced BBB permeability to Na-F and inhibited the disruption of the adherens and tight junction proteins. Melatonin also downregulated MMP-9 and upregulated tissue inhibitor of metalloproteinases 1 (TIMP-1) gene expression, which decreased the MMP-9/TIMP-1 ratio. In addition, nuclear translocation of NF-κB/p65 induced by IL-1β in pericytes upregulated MMP-9 expression, which was inhibited by the NF-κB inhibitor PDTC. However, the NOTCH3 inhibitor DAPT significantly inhibited NF-κB/p65 translocation to the nucleus, while melatonin in combination with DAPT significantly prevented NF-κB/p65 translocation than DAPT alone. Our results suggest that melatonin reduced MMP-9-induced permeability of the BBB. Melatonin reduced MMP-9 expression and activity, which was induced by IL-1β through the regulation of the NOTCH3/NF-κB signaling pathway in pericytes, suggesting that pericytes regulate BBB integrity and function. Impact Journals 2019-12-07 /pmc/articles/PMC6932927/ /pubmed/31811815 http://dx.doi.org/10.18632/aging.102537 Text en Copyright © 2019 Qin et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Qin, Weiwei Li, Jing Zhu, Rongjia Gao, Suhua Fan, Junfen Xia, Mingrong Zhao, Robert Chunhua Zhang, Jiewen Melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the NOTCH3/NF-κB pathway |
title | Melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the NOTCH3/NF-κB pathway |
title_full | Melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the NOTCH3/NF-κB pathway |
title_fullStr | Melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the NOTCH3/NF-κB pathway |
title_full_unstemmed | Melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the NOTCH3/NF-κB pathway |
title_short | Melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the NOTCH3/NF-κB pathway |
title_sort | melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the notch3/nf-κb pathway |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6932927/ https://www.ncbi.nlm.nih.gov/pubmed/31811815 http://dx.doi.org/10.18632/aging.102537 |
work_keys_str_mv | AT qinweiwei melatoninprotectsbloodbrainbarrierintegrityandpermeabilitybyinhibitingmatrixmetalloproteinase9viathenotch3nfkbpathway AT lijing melatoninprotectsbloodbrainbarrierintegrityandpermeabilitybyinhibitingmatrixmetalloproteinase9viathenotch3nfkbpathway AT zhurongjia melatoninprotectsbloodbrainbarrierintegrityandpermeabilitybyinhibitingmatrixmetalloproteinase9viathenotch3nfkbpathway AT gaosuhua melatoninprotectsbloodbrainbarrierintegrityandpermeabilitybyinhibitingmatrixmetalloproteinase9viathenotch3nfkbpathway AT fanjunfen melatoninprotectsbloodbrainbarrierintegrityandpermeabilitybyinhibitingmatrixmetalloproteinase9viathenotch3nfkbpathway AT xiamingrong melatoninprotectsbloodbrainbarrierintegrityandpermeabilitybyinhibitingmatrixmetalloproteinase9viathenotch3nfkbpathway AT zhaorobertchunhua melatoninprotectsbloodbrainbarrierintegrityandpermeabilitybyinhibitingmatrixmetalloproteinase9viathenotch3nfkbpathway AT zhangjiewen melatoninprotectsbloodbrainbarrierintegrityandpermeabilitybyinhibitingmatrixmetalloproteinase9viathenotch3nfkbpathway |