Cargando…

Learning a Latent Space of Highly Multidimensional Cancer Data

We introduce a Unified Disentanglement Network (UFDN) trained on The Cancer Genome Atlas (TCGA), which we refer to as UFDN-TCGA. We demonstrate that UFDN-TCGA learns a biologically relevant, low-dimensional latent space of high-dimensional gene expression data by applying our network to two classifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kompa, Benjamin, Coker, Beau
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934353/
https://www.ncbi.nlm.nih.gov/pubmed/31797612