Cargando…

Learning a Latent Space of Highly Multidimensional Cancer Data

We introduce a Unified Disentanglement Network (UFDN) trained on The Cancer Genome Atlas (TCGA), which we refer to as UFDN-TCGA. We demonstrate that UFDN-TCGA learns a biologically relevant, low-dimensional latent space of high-dimensional gene expression data by applying our network to two classifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kompa, Benjamin, Coker, Beau
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934353/
https://www.ncbi.nlm.nih.gov/pubmed/31797612
Descripción
Sumario:We introduce a Unified Disentanglement Network (UFDN) trained on The Cancer Genome Atlas (TCGA), which we refer to as UFDN-TCGA. We demonstrate that UFDN-TCGA learns a biologically relevant, low-dimensional latent space of high-dimensional gene expression data by applying our network to two classification tasks of cancer status and cancer type. UFDN-TCGA performs comparably to random forest methods. The UFDN allows for continuous, partial interpolation between distinct cancer types. Furthermore, we perform an analysis of differentially expressed genes between skin cutaneous melanoma (SKCM) samples and the same samples interpolated into glioblastoma (GBM). We demonstrate that our interpolations consist of relevant metagenes that recapitulate known glioblastoma mechanisms.