Cargando…
Learning a Latent Space of Highly Multidimensional Cancer Data
We introduce a Unified Disentanglement Network (UFDN) trained on The Cancer Genome Atlas (TCGA), which we refer to as UFDN-TCGA. We demonstrate that UFDN-TCGA learns a biologically relevant, low-dimensional latent space of high-dimensional gene expression data by applying our network to two classifi...
Autores principales: | Kompa, Benjamin, Coker, Beau |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934353/ https://www.ncbi.nlm.nih.gov/pubmed/31797612 |
Ejemplares similares
-
Multidimensional Latent Semantic Networks for Text Humor Recognition
por: Xiong, Siqi, et al.
Publicado: (2022) -
Quantum machine learning in the latent space of high energy physics events
por: Anna Woźniak, Kinga, et al.
Publicado: (2023) -
Multidimensional motivation for exercise: A latent profile and transition analysis
por: Emm-Collison, Lydia G., et al.
Publicado: (2020) -
Decision space: multidimensional utility analysis
por: Weirich, Paul
Publicado: (2001) -
scAEGAN: Unification of single-cell genomics data by adversarial learning of latent space correspondences
por: Khan, Sumeer Ahmad, et al.
Publicado: (2023)