Cargando…
Ferroelectric Tunneling Junctions Based on Aluminum Oxide/ Zirconium-Doped Hafnium Oxide for Neuromorphic Computing
Ferroelectric tunneling junctions (FTJs) with tunable tunneling electroresistance (TER) are promising for many emerging applications, including non-volatile memories and neurosynaptic computing. One of the key challenges in FTJs is the balance between the polarization value and the tunneling current...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938512/ https://www.ncbi.nlm.nih.gov/pubmed/31892720 http://dx.doi.org/10.1038/s41598-019-56816-x |
Sumario: | Ferroelectric tunneling junctions (FTJs) with tunable tunneling electroresistance (TER) are promising for many emerging applications, including non-volatile memories and neurosynaptic computing. One of the key challenges in FTJs is the balance between the polarization value and the tunneling current. In order to achieve a sizable on-current, the thickness of the ferroelectric layer needs to be scaled down below 5 nm. However, the polarization in these ultra-thin ferroelectric layers is very small, which leads to a low tunneling electroresistance (TER) ratio. In this paper, we propose and demonstrate a new type of FTJ based on metal/Al(2)O(3)/Zr-doped HfO(2)/Si structure. The interfacial Al(2)O(3) layer and silicon substrate enable sizable TERs even when the thickness of Zr-doped HfO(2) (HZO) is above 10 nm. We found that F-N tunneling dominates at read voltages and that the polarization switching in HZO can alter the effective tunneling barrier height and tune the tunneling resistance. The FTJ synapses based on Al(2)O(3)/HZO stacks show symmetric potentiation/depression characteristics and widely tunable conductance. We also show that spike-timing-dependent plasticity (STDP) can be harnessed from HZO based FTJs. These novel FTJs will have high potential in non-volatile memories and neural network applications. |
---|