Cargando…
Generation of a genetically modified human embryonic stem cells expressing fluorescence tagged ATOX1
ATOX1 is a copper chaperone involved in intracellular copper homeostasis, cell proliferation, and tumor progression. To investigate the physiologically relevant molecular mechanism of ATOX1 by using imaging-based approaches, we genetically modified ATOX1 in H1 hESCs to express mCherry-ATOX1 fusion p...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939864/ https://www.ncbi.nlm.nih.gov/pubmed/31704540 http://dx.doi.org/10.1016/j.scr.2019.101631 |
Sumario: | ATOX1 is a copper chaperone involved in intracellular copper homeostasis, cell proliferation, and tumor progression. To investigate the physiologically relevant molecular mechanism of ATOX1 by using imaging-based approaches, we genetically modified ATOX1 in H1 hESCs to express mCherry-ATOX1 fusion protein under endogenous regulatory machinery. The fluorescence engineered hESC clone maintains characteristic stem cell features and can differentiate to all three germ layers, serving as a unique tool to dissect the role of ATOX1 in various cellular processes. |
---|