Cargando…
Temporal Control of the TGF-β Signaling Network by Mouse ESC MicroRNA Targets of Different Affinities
Although microRNAs (miRNAs) function in the control of embryonic stem cell (ESC) pluripotency, a systems-level understanding is still being developed. Through the analysis of progressive Argonaute (Ago)-miRNA depletion and rescue, including stable Ago knockout mouse ESCs, we uncover transforming gro...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6939994/ https://www.ncbi.nlm.nih.gov/pubmed/31775039 http://dx.doi.org/10.1016/j.celrep.2019.10.109 |
Sumario: | Although microRNAs (miRNAs) function in the control of embryonic stem cell (ESC) pluripotency, a systems-level understanding is still being developed. Through the analysis of progressive Argonaute (Ago)-miRNA depletion and rescue, including stable Ago knockout mouse ESCs, we uncover transforming growth factor beta (TGF-β) pathway activation as a direct and early response to ESC miRNA reduction. Mechanistically, we link the derepression of weaker miRNA targets, including TGF-β receptor 1 (Tgfbr1), to the sensitive TGF-β pathway activation. In contrast, stronger miRNA targets impart a more robust repression, which dampens concurrent transcriptional activation. We verify such dampened induction for TGF-β antagonist Lefty. We find that TGF-β pathway activation contributes to the G1 cell-cycle accumulation of miRNA-deficient ESCs. We propose that miRNA target affinity is a determinant of the temporal response to miRNA changes, which enables the coordination of gene network responses. |
---|