Cargando…
Evaluation of the Combined Use of Saccharomyces Cerevisiae and Aspergillus Oryzae with Phytase Fermentation Products on Growth, Inflammatory, and Intestinal Morphology in Broilers
SIMPLE SUMMARY: The stress and anti-nutrient effect caused by environmental problems and animal feed is an urgent problem in poultry production. As ancient probiotics, Aspergillus oryzae and Saccharomyces cerevisiae can effectively improve the immunity of animals. Furthermore, the anti-nutrient obje...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6940866/ https://www.ncbi.nlm.nih.gov/pubmed/31805670 http://dx.doi.org/10.3390/ani9121051 |
Sumario: | SIMPLE SUMMARY: The stress and anti-nutrient effect caused by environmental problems and animal feed is an urgent problem in poultry production. As ancient probiotics, Aspergillus oryzae and Saccharomyces cerevisiae can effectively improve the immunity of animals. Furthermore, the anti-nutrient object, phytate, reduces nutrition absorption. Therefore, S. cerevisiae or A. oryzae with phytase co-fermentation may help solve these problems. Results show that the addition of a fermentation product can effectively reduce the inflammatory response and drop the number of harmful bacteria in the ileum of broilers. Among them, A. oryzae fermentation product has a better effect than S. cerevisiae fermentation product. ABSTRACT: Saccharomyces cerevisiae and Aspergillus oryzae are both ancient probiotic species traditionally used as microbes for brewing beer and soy sauce, respectively. This study investigated the effect of adding these two probiotics with phytase fermentation products to the broilers diet. Fermented products possess protease and cellulase, and the activities were 777.1 and 189.5 U/g dry matter (DM) on S. cerevisiae fermented products (SCFP) and 190 and 213.4 U/g DM on A. oryzae fermented products (AOFP), respectively. Liposaccharides stimulated PBMCs to produce nitric oxide to 120 μmol. Both SCFP and AOFP reduced lipopolysaccharides stimulated peripheral blood mononuclear cells (PBMCs) nitric oxide release to 40 and 60 μmol, respectively. Nevertheless, in an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, SCFP and AOFP also increased the survival rate of lipopolysaccharides stimulated PBMCs by almost two-fold compared to the negative control. A total of 240 broilers were divided into four groups as Control, SCFP 0.1% (SCFP), SCFP 0.05% + AOFP 0.05% (SAFP), and AOFP 0.1% (AOFP) groups, respectively. Each group had 20 broilers, and three replicate pens. The results showed that the addition of SCFP, SAFP, and AOFP groups did not affect the growth performances, but increased the jejunum value of villus height and villus: crypt ratio on SAFP and AOFP groups compared to the control and SCFP groups. Furthermore, adding SCFP, SAFP, and AOFP significantly reduced the number of Clostridium perfringens in ileum chyme. SCFP, SAFP, and AOFP significantly reduced the amount of interleukin-1β, inducible nitric oxide synthases, interferon-γ, and nuclear factor kappa B mRNA expression in PBMCs, especially in the AOFP group. In summary, all the SCFP, SAFP, and AOFP groups can be suggested as a functional feed additive since they enhanced villus: crypt ratio and decreased inflammation-related mRNA expression, especially for AOFP group in broilers. |
---|