Cargando…
A Piezoelectric and Electromagnetic Dual Mechanism Multimodal Linear Actuator for Generating Macro- and Nanomotion
Fast actuation with nanoprecision over a large range has been a challenge in advanced intelligent manufacturing like lithography mask aligner. Traditional stacked stage method works effectively only in a local, limited range, and vibration coupling is also challenging. Here, we design a dual mechani...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6946261/ https://www.ncbi.nlm.nih.gov/pubmed/31922139 http://dx.doi.org/10.34133/2019/8232097 |
Sumario: | Fast actuation with nanoprecision over a large range has been a challenge in advanced intelligent manufacturing like lithography mask aligner. Traditional stacked stage method works effectively only in a local, limited range, and vibration coupling is also challenging. Here, we design a dual mechanism multimodal linear actuator (DMMLA) consisted of piezoelectric and electromagnetic costator and coslider for producing macro-, micro-, and nanomotion, respectively. A DMMLA prototype is fabricated, and each working mode is validated separately, confirming its fast motion (0~50 mm/s) in macromotion mode, micromotion (0~135 μm/s) and nanomotion (minimum step: 0~2 nm) in piezoelectric step and servomotion modes. The proposed dual mechanism design and multimodal motion method pave the way for next generation high-precision actuator development. |
---|