Cargando…
Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization
Modern high-throughput experiments provide a rich resource to investigate causal determinants of disease risk. Mendelian randomization (MR) is the use of genetic variants as instrumental variables to infer the causal effect of a specific risk factor on an outcome. Multivariable MR is an extension of...
Autores principales: | Zuber, Verena, Colijn, Johanna Maria, Klaver, Caroline, Burgess, Stephen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6946691/ https://www.ncbi.nlm.nih.gov/pubmed/31911605 http://dx.doi.org/10.1038/s41467-019-13870-3 |
Ejemplares similares
-
High-throughput multivariable Mendelian randomization analysis prioritizes apolipoprotein B as key lipid risk factor for coronary artery disease
por: Zuber, Verena, et al.
Publicado: (2020) -
Multivariable Mendelian Randomization: The Use of Pleiotropic Genetic Variants to Estimate Causal Effects
por: Burgess, Stephen, et al.
Publicado: (2015) -
Using Multivariable Mendelian Randomization to Disentangle the Causal Effects of Lipid Fractions
por: Burgess, Stephen, et al.
Publicado: (2014) -
Estimation of time-varying causal effects with multivariable Mendelian randomization: some cautionary notes
por: Tian, Haodong, et al.
Publicado: (2023) -
Pleiotropy robust methods for multivariable Mendelian randomization
por: Grant, Andrew J., et al.
Publicado: (2021)