Cargando…
Multi-Omics Integration Reveals Short and Long-Term Effects of Gestational Hypoxia on the Heart Development
Antenatal hypoxia caused epigenetic reprogramming of methylome and transcriptome in the developing heart and increased the risk of heart disease later in life. Herein, we investigated the impact of gestational hypoxia in proteome and metabolome in the hearts of fetus and adult offspring. Pregnant ra...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952773/ https://www.ncbi.nlm.nih.gov/pubmed/31835778 http://dx.doi.org/10.3390/cells8121608 |
_version_ | 1783486497642512384 |
---|---|
author | Gao, Yu Dasgupta, Chiranjib Huang, Lei Song, Rui Zhang, Ziwei Zhang, Lubo |
author_facet | Gao, Yu Dasgupta, Chiranjib Huang, Lei Song, Rui Zhang, Ziwei Zhang, Lubo |
author_sort | Gao, Yu |
collection | PubMed |
description | Antenatal hypoxia caused epigenetic reprogramming of methylome and transcriptome in the developing heart and increased the risk of heart disease later in life. Herein, we investigated the impact of gestational hypoxia in proteome and metabolome in the hearts of fetus and adult offspring. Pregnant rats were treated with normoxia or hypoxia (10.5% O(2)) from day 15 to 21 of gestation. Hearts were isolated from near-term fetuses and 5 month-old offspring, and proteomics and metabolomics profiling was determined. The data demonstrated that antenatal hypoxia altered proteomics and metabolomics profiling in the heart, impacting energy metabolism, lipid metabolism, oxidative stress, and inflammation-related pathways in a developmental and sex dependent manner. Of importance, integrating multi-omics data of transcriptomics, proteomics, and metabolomics profiling revealed reprogramming of the mitochondrion, especially in two clusters: (a) the cluster associated with “mitochondrial translation”/“aminoacyl t-RNA biosynthesis”/“one-carbon pool of folate”/“DNA methylation”; and (b) the cluster with “mitochondrion”/“TCA cycle and respiratory electron transfer”/“acyl-CoA dehydrogenase”/“oxidative phosphorylation”/“complex I”/“troponin myosin cardiac complex”. Our study provides a powerful means of multi-omics data integration and reveals new insights into phenotypic reprogramming of the mitochondrion in the developing heart by fetal hypoxia, contributing to an increase in the heart vulnerability to disease later in life. |
format | Online Article Text |
id | pubmed-6952773 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69527732020-01-23 Multi-Omics Integration Reveals Short and Long-Term Effects of Gestational Hypoxia on the Heart Development Gao, Yu Dasgupta, Chiranjib Huang, Lei Song, Rui Zhang, Ziwei Zhang, Lubo Cells Article Antenatal hypoxia caused epigenetic reprogramming of methylome and transcriptome in the developing heart and increased the risk of heart disease later in life. Herein, we investigated the impact of gestational hypoxia in proteome and metabolome in the hearts of fetus and adult offspring. Pregnant rats were treated with normoxia or hypoxia (10.5% O(2)) from day 15 to 21 of gestation. Hearts were isolated from near-term fetuses and 5 month-old offspring, and proteomics and metabolomics profiling was determined. The data demonstrated that antenatal hypoxia altered proteomics and metabolomics profiling in the heart, impacting energy metabolism, lipid metabolism, oxidative stress, and inflammation-related pathways in a developmental and sex dependent manner. Of importance, integrating multi-omics data of transcriptomics, proteomics, and metabolomics profiling revealed reprogramming of the mitochondrion, especially in two clusters: (a) the cluster associated with “mitochondrial translation”/“aminoacyl t-RNA biosynthesis”/“one-carbon pool of folate”/“DNA methylation”; and (b) the cluster with “mitochondrion”/“TCA cycle and respiratory electron transfer”/“acyl-CoA dehydrogenase”/“oxidative phosphorylation”/“complex I”/“troponin myosin cardiac complex”. Our study provides a powerful means of multi-omics data integration and reveals new insights into phenotypic reprogramming of the mitochondrion in the developing heart by fetal hypoxia, contributing to an increase in the heart vulnerability to disease later in life. MDPI 2019-12-11 /pmc/articles/PMC6952773/ /pubmed/31835778 http://dx.doi.org/10.3390/cells8121608 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gao, Yu Dasgupta, Chiranjib Huang, Lei Song, Rui Zhang, Ziwei Zhang, Lubo Multi-Omics Integration Reveals Short and Long-Term Effects of Gestational Hypoxia on the Heart Development |
title | Multi-Omics Integration Reveals Short and Long-Term Effects of Gestational Hypoxia on the Heart Development |
title_full | Multi-Omics Integration Reveals Short and Long-Term Effects of Gestational Hypoxia on the Heart Development |
title_fullStr | Multi-Omics Integration Reveals Short and Long-Term Effects of Gestational Hypoxia on the Heart Development |
title_full_unstemmed | Multi-Omics Integration Reveals Short and Long-Term Effects of Gestational Hypoxia on the Heart Development |
title_short | Multi-Omics Integration Reveals Short and Long-Term Effects of Gestational Hypoxia on the Heart Development |
title_sort | multi-omics integration reveals short and long-term effects of gestational hypoxia on the heart development |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952773/ https://www.ncbi.nlm.nih.gov/pubmed/31835778 http://dx.doi.org/10.3390/cells8121608 |
work_keys_str_mv | AT gaoyu multiomicsintegrationrevealsshortandlongtermeffectsofgestationalhypoxiaontheheartdevelopment AT dasguptachiranjib multiomicsintegrationrevealsshortandlongtermeffectsofgestationalhypoxiaontheheartdevelopment AT huanglei multiomicsintegrationrevealsshortandlongtermeffectsofgestationalhypoxiaontheheartdevelopment AT songrui multiomicsintegrationrevealsshortandlongtermeffectsofgestationalhypoxiaontheheartdevelopment AT zhangziwei multiomicsintegrationrevealsshortandlongtermeffectsofgestationalhypoxiaontheheartdevelopment AT zhanglubo multiomicsintegrationrevealsshortandlongtermeffectsofgestationalhypoxiaontheheartdevelopment |