Cargando…

Anosmin-1 activates vascular endothelial growth factor receptor and its related signaling pathway for olfactory bulb angiogenesis

Anosmin-1 is a secreted glycoprotein encoded by the ANOS1 gene, and its loss of function causes Kallmann syndrome (KS), which is characterized by anosmia and hypogonadism due to olfactory bulb (OB) dysfunction. However, the physiological function of anosmin-1 remains to be elucidated. In KS, disorde...

Descripción completa

Detalles Bibliográficos
Autores principales: Matsushima, Shoko, Shimizu, Akio, Kondo, Manami, Asano, Hirotsugu, Ueno, Nobuhiro, Nakayama, Hironao, Sato, Naoko, Komeno, Masahiro, Ogita, Hisakazu, Kurokawa-Seo, Misuzu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6957483/
https://www.ncbi.nlm.nih.gov/pubmed/31932617
http://dx.doi.org/10.1038/s41598-019-57040-3
Descripción
Sumario:Anosmin-1 is a secreted glycoprotein encoded by the ANOS1 gene, and its loss of function causes Kallmann syndrome (KS), which is characterized by anosmia and hypogonadism due to olfactory bulb (OB) dysfunction. However, the physiological function of anosmin-1 remains to be elucidated. In KS, disordered angiogenesis is observed in OB, resulting in its hypoplasia. In this study, we examined the involvement of anosmin-1 in angiogenic processes. Anosmin-1 was detected on the vessel-like structure in OB of chick embryos, and promoted the outgrowth of vascular sprouts as shown by assays of OB tissue culture. Cell migration, proliferation, and tube formation of endothelial cells were induced by treatment with anosmin-1 as well as vascular endothelial growth factor-A (VEGF-A), and further enhanced by treatment with both of them. We newly identified that anosmin-1 activated VEGF receptor-2 (VEGFR2) by binding directly to it, and its downstream signaling molecules, phospholipase Cγ1 (PLCγ1) and protein kinase C (PKC). These results suggest that anosmin-1 plays a key role in the angiogenesis of developing OB through the VEGFR2–PLCγ1–PKC axis by enhancing the VEGF function.