Cargando…
FGF14 Functions as a Tumor Suppressor through Inhibiting PI3K/AKT/mTOR Pathway in Colorectal Cancer
We identified that Fibroblast Growth Factor 14 (FGF14) was preferentially methylated in colorectal cancer (CRC). In this study, we aimed to investigate the epigenetic regulation, biological function and molecular mechanism of FGF14 in CRC. The expression of FGF14 in CRC cell lines, normal human colo...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6959027/ https://www.ncbi.nlm.nih.gov/pubmed/31949485 http://dx.doi.org/10.7150/jca.36316 |
_version_ | 1783487518530863104 |
---|---|
author | Su, Tianhong Huang, Linlin Zhang, Ning Peng, Sui Li, Xiaoxing Wei, Guangyan Zhai, Ertao Zeng, Zhirong Xu, Lixia |
author_facet | Su, Tianhong Huang, Linlin Zhang, Ning Peng, Sui Li, Xiaoxing Wei, Guangyan Zhai, Ertao Zeng, Zhirong Xu, Lixia |
author_sort | Su, Tianhong |
collection | PubMed |
description | We identified that Fibroblast Growth Factor 14 (FGF14) was preferentially methylated in colorectal cancer (CRC). In this study, we aimed to investigate the epigenetic regulation, biological function and molecular mechanism of FGF14 in CRC. The expression of FGF14 in CRC cell lines, normal human colon epithelial cell line, CRC tissues and paired adjacent normal tissues was detected by PCR and Western blot. The biological function of FGF14 in CRC was interrogated by cell viability assay, colony formation, flow cytometry, cell invasion and migration assay, as well as in vivo study. We found FGF14 was downregulated or silenced in all (10/10) CRC cell lines, while it was expressed in normal colonic tissues and normal human colon epithelial cell line. The expression of FGF14 was lower in primary CRCs as compared to their adjacent normal tissues. Significant higher methylation of FGF14 was observed in CRCs than that in normal tissues based on the data from TCGA database. The loss of FGF14 gene expression was restored by treatment with DNA methyltransferase inhibitor 5-Aza. Re-expression of FGF14 in CRC cell lines inhibited cell viability and colony formation, and induced cell apoptosis. FGF14 induced mitochondrial apoptosis and inhibited PI3K/AKT/mTOR pathway. In xenograft mouse model, overexpression of FGF14 significantly reduced tumor growth (P<0.001). In conclusion, FGF14 is a novel tumor suppressor, which suppresses cell proliferation and induces cell apoptosis via mediating PI3K/AKT/mTOR pathway. |
format | Online Article Text |
id | pubmed-6959027 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-69590272020-01-16 FGF14 Functions as a Tumor Suppressor through Inhibiting PI3K/AKT/mTOR Pathway in Colorectal Cancer Su, Tianhong Huang, Linlin Zhang, Ning Peng, Sui Li, Xiaoxing Wei, Guangyan Zhai, Ertao Zeng, Zhirong Xu, Lixia J Cancer Research Paper We identified that Fibroblast Growth Factor 14 (FGF14) was preferentially methylated in colorectal cancer (CRC). In this study, we aimed to investigate the epigenetic regulation, biological function and molecular mechanism of FGF14 in CRC. The expression of FGF14 in CRC cell lines, normal human colon epithelial cell line, CRC tissues and paired adjacent normal tissues was detected by PCR and Western blot. The biological function of FGF14 in CRC was interrogated by cell viability assay, colony formation, flow cytometry, cell invasion and migration assay, as well as in vivo study. We found FGF14 was downregulated or silenced in all (10/10) CRC cell lines, while it was expressed in normal colonic tissues and normal human colon epithelial cell line. The expression of FGF14 was lower in primary CRCs as compared to their adjacent normal tissues. Significant higher methylation of FGF14 was observed in CRCs than that in normal tissues based on the data from TCGA database. The loss of FGF14 gene expression was restored by treatment with DNA methyltransferase inhibitor 5-Aza. Re-expression of FGF14 in CRC cell lines inhibited cell viability and colony formation, and induced cell apoptosis. FGF14 induced mitochondrial apoptosis and inhibited PI3K/AKT/mTOR pathway. In xenograft mouse model, overexpression of FGF14 significantly reduced tumor growth (P<0.001). In conclusion, FGF14 is a novel tumor suppressor, which suppresses cell proliferation and induces cell apoptosis via mediating PI3K/AKT/mTOR pathway. Ivyspring International Publisher 2020-01-01 /pmc/articles/PMC6959027/ /pubmed/31949485 http://dx.doi.org/10.7150/jca.36316 Text en © The author(s) This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Su, Tianhong Huang, Linlin Zhang, Ning Peng, Sui Li, Xiaoxing Wei, Guangyan Zhai, Ertao Zeng, Zhirong Xu, Lixia FGF14 Functions as a Tumor Suppressor through Inhibiting PI3K/AKT/mTOR Pathway in Colorectal Cancer |
title | FGF14 Functions as a Tumor Suppressor through Inhibiting PI3K/AKT/mTOR Pathway in Colorectal Cancer |
title_full | FGF14 Functions as a Tumor Suppressor through Inhibiting PI3K/AKT/mTOR Pathway in Colorectal Cancer |
title_fullStr | FGF14 Functions as a Tumor Suppressor through Inhibiting PI3K/AKT/mTOR Pathway in Colorectal Cancer |
title_full_unstemmed | FGF14 Functions as a Tumor Suppressor through Inhibiting PI3K/AKT/mTOR Pathway in Colorectal Cancer |
title_short | FGF14 Functions as a Tumor Suppressor through Inhibiting PI3K/AKT/mTOR Pathway in Colorectal Cancer |
title_sort | fgf14 functions as a tumor suppressor through inhibiting pi3k/akt/mtor pathway in colorectal cancer |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6959027/ https://www.ncbi.nlm.nih.gov/pubmed/31949485 http://dx.doi.org/10.7150/jca.36316 |
work_keys_str_mv | AT sutianhong fgf14functionsasatumorsuppressorthroughinhibitingpi3kaktmtorpathwayincolorectalcancer AT huanglinlin fgf14functionsasatumorsuppressorthroughinhibitingpi3kaktmtorpathwayincolorectalcancer AT zhangning fgf14functionsasatumorsuppressorthroughinhibitingpi3kaktmtorpathwayincolorectalcancer AT pengsui fgf14functionsasatumorsuppressorthroughinhibitingpi3kaktmtorpathwayincolorectalcancer AT lixiaoxing fgf14functionsasatumorsuppressorthroughinhibitingpi3kaktmtorpathwayincolorectalcancer AT weiguangyan fgf14functionsasatumorsuppressorthroughinhibitingpi3kaktmtorpathwayincolorectalcancer AT zhaiertao fgf14functionsasatumorsuppressorthroughinhibitingpi3kaktmtorpathwayincolorectalcancer AT zengzhirong fgf14functionsasatumorsuppressorthroughinhibitingpi3kaktmtorpathwayincolorectalcancer AT xulixia fgf14functionsasatumorsuppressorthroughinhibitingpi3kaktmtorpathwayincolorectalcancer |