Cargando…
Monitoring online biomass with a capacitance sensor during scale-up of industrially relevant CHO cell culture fed-batch processes in single-use bioreactors
In 2004, the FDA published a guideline to implement process analytical technologies (PAT) in biopharmaceutical processes for process monitoring to gain process understanding and for the control of important process parameters. Viable cell concentration (VCC) is one of the most important key performa...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960217/ https://www.ncbi.nlm.nih.gov/pubmed/31549309 http://dx.doi.org/10.1007/s00449-019-02216-4 |
_version_ | 1783487745394475008 |
---|---|
author | Metze, S. Ruhl, S. Greller, G. Grimm, C. Scholz, J. |
author_facet | Metze, S. Ruhl, S. Greller, G. Grimm, C. Scholz, J. |
author_sort | Metze, S. |
collection | PubMed |
description | In 2004, the FDA published a guideline to implement process analytical technologies (PAT) in biopharmaceutical processes for process monitoring to gain process understanding and for the control of important process parameters. Viable cell concentration (VCC) is one of the most important key performance indicator (KPI) during mammalian cell cultivation processes. Commonly, this is measured offline. In this work, we demonstrated the comparability and scalability of linear regression models derived from online capacitance measurements. The linear regressions were used to predict the VCC and other familiar offline biomass indicators, like the viable cell volume (VCV) and the wet cell weight (WCW), in two different industrially relevant CHO cell culture processes (Process A and Process B). Therefore, different single-use bioreactor scales (50–2000 L) were used to prove feasibility and scalability of the in-line sensor integration. Coefficient of determinations of 0.79 for Process A and 0.99 for Process B for the WCW were achieved. The VCV was described with high coefficients of determination of 0.96 (Process A) and 0.98 (Process B), respectively. In agreement with other work from the literature, the VCC was only described within the exponential growth phase, but resulting in excellent coefficients of determination of 0.99 (Process A) and 0.96 (Process B), respectively. Monitoring these KPIs online using linear regression models appeared to be scale-independent, enabled deeper process understanding (e.g. here demonstrated in monitoring, the feeding profile) and showed the potential of this method for process control. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00449-019-02216-4) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6960217 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-69602172020-01-29 Monitoring online biomass with a capacitance sensor during scale-up of industrially relevant CHO cell culture fed-batch processes in single-use bioreactors Metze, S. Ruhl, S. Greller, G. Grimm, C. Scholz, J. Bioprocess Biosyst Eng Research Paper In 2004, the FDA published a guideline to implement process analytical technologies (PAT) in biopharmaceutical processes for process monitoring to gain process understanding and for the control of important process parameters. Viable cell concentration (VCC) is one of the most important key performance indicator (KPI) during mammalian cell cultivation processes. Commonly, this is measured offline. In this work, we demonstrated the comparability and scalability of linear regression models derived from online capacitance measurements. The linear regressions were used to predict the VCC and other familiar offline biomass indicators, like the viable cell volume (VCV) and the wet cell weight (WCW), in two different industrially relevant CHO cell culture processes (Process A and Process B). Therefore, different single-use bioreactor scales (50–2000 L) were used to prove feasibility and scalability of the in-line sensor integration. Coefficient of determinations of 0.79 for Process A and 0.99 for Process B for the WCW were achieved. The VCV was described with high coefficients of determination of 0.96 (Process A) and 0.98 (Process B), respectively. In agreement with other work from the literature, the VCC was only described within the exponential growth phase, but resulting in excellent coefficients of determination of 0.99 (Process A) and 0.96 (Process B), respectively. Monitoring these KPIs online using linear regression models appeared to be scale-independent, enabled deeper process understanding (e.g. here demonstrated in monitoring, the feeding profile) and showed the potential of this method for process control. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00449-019-02216-4) contains supplementary material, which is available to authorized users. Springer Berlin Heidelberg 2019-09-23 2020 /pmc/articles/PMC6960217/ /pubmed/31549309 http://dx.doi.org/10.1007/s00449-019-02216-4 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Paper Metze, S. Ruhl, S. Greller, G. Grimm, C. Scholz, J. Monitoring online biomass with a capacitance sensor during scale-up of industrially relevant CHO cell culture fed-batch processes in single-use bioreactors |
title | Monitoring online biomass with a capacitance sensor during scale-up of industrially relevant CHO cell culture fed-batch processes in single-use bioreactors |
title_full | Monitoring online biomass with a capacitance sensor during scale-up of industrially relevant CHO cell culture fed-batch processes in single-use bioreactors |
title_fullStr | Monitoring online biomass with a capacitance sensor during scale-up of industrially relevant CHO cell culture fed-batch processes in single-use bioreactors |
title_full_unstemmed | Monitoring online biomass with a capacitance sensor during scale-up of industrially relevant CHO cell culture fed-batch processes in single-use bioreactors |
title_short | Monitoring online biomass with a capacitance sensor during scale-up of industrially relevant CHO cell culture fed-batch processes in single-use bioreactors |
title_sort | monitoring online biomass with a capacitance sensor during scale-up of industrially relevant cho cell culture fed-batch processes in single-use bioreactors |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960217/ https://www.ncbi.nlm.nih.gov/pubmed/31549309 http://dx.doi.org/10.1007/s00449-019-02216-4 |
work_keys_str_mv | AT metzes monitoringonlinebiomasswithacapacitancesensorduringscaleupofindustriallyrelevantchocellculturefedbatchprocessesinsingleusebioreactors AT ruhls monitoringonlinebiomasswithacapacitancesensorduringscaleupofindustriallyrelevantchocellculturefedbatchprocessesinsingleusebioreactors AT grellerg monitoringonlinebiomasswithacapacitancesensorduringscaleupofindustriallyrelevantchocellculturefedbatchprocessesinsingleusebioreactors AT grimmc monitoringonlinebiomasswithacapacitancesensorduringscaleupofindustriallyrelevantchocellculturefedbatchprocessesinsingleusebioreactors AT scholzj monitoringonlinebiomasswithacapacitancesensorduringscaleupofindustriallyrelevantchocellculturefedbatchprocessesinsingleusebioreactors |