Cargando…
A Pretraining-Retraining Strategy of Deep Learning Improves Cell-Specific Enhancer Predictions
Deciphering the code of cis-regulatory element (CRE) is one of the core issues of today’s biology. Enhancers are distal CREs and play significant roles in gene transcriptional regulation. Although identifications of enhancer locations across the whole genome [discriminative enhancer predictions (DEP...
Autores principales: | Niu, Xiaohui, Yang, Kun, Zhang, Ge, Yang, Zhiquan, Hu, Xuehai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960260/ https://www.ncbi.nlm.nih.gov/pubmed/31969903 http://dx.doi.org/10.3389/fgene.2019.01305 |
Ejemplares similares
-
Enhanced Tooth Region Detection Using Pretrained Deep Learning Models
por: Al-Sarem, Mohammed, et al.
Publicado: (2022) -
Assessment of emerging pretraining strategies in interpretable multimodal deep learning for cancer prognostication
por: Azher, Zarif L., et al.
Publicado: (2023) -
Retrain or Not Retrain? - Efficient Pruning Methods of Deep CNN Networks
por: Pietron, Marcin, et al.
Publicado: (2020) -
Systems Genetic Validation of the SNP-Metabolite Association in Rice Via Metabolite-Pathway-Based Phenome-Wide Association Scans
por: Lu, Yaping, et al.
Publicado: (2015) -
Comparison of Pretraining Models and Strategies for Health-Related Social Media Text Classification
por: Guo, Yuting, et al.
Publicado: (2022)