Cargando…
An Improved Normalized Mutual Information Variable Selection Algorithm for Neural Network-Based Soft Sensors
In this paper, normalized mutual information feature selection (NMIFS) and tabu search (TS) are integrated to develop a new variable selection algorithm for soft sensors. NMIFS is applied to select influential variables contributing to the output variable and avoids selecting redundant variables by...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960561/ https://www.ncbi.nlm.nih.gov/pubmed/31817459 http://dx.doi.org/10.3390/s19245368 |