Cargando…
An Improved Normalized Mutual Information Variable Selection Algorithm for Neural Network-Based Soft Sensors
In this paper, normalized mutual information feature selection (NMIFS) and tabu search (TS) are integrated to develop a new variable selection algorithm for soft sensors. NMIFS is applied to select influential variables contributing to the output variable and avoids selecting redundant variables by...
Autores principales: | Sun, Kai, Tian, Pengxin, Qi, Huanning, Ma, Fengying, Yang, Genke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960561/ https://www.ncbi.nlm.nih.gov/pubmed/31817459 http://dx.doi.org/10.3390/s19245368 |
Ejemplares similares
-
A Novel Variable Selection Method Based on Binning-Normalized Mutual Information for Multivariate Calibration
por: Zhong, Liang, et al.
Publicado: (2023) -
Feature Selection for Chemical Sensor Arrays Using Mutual Information
por: Wang, X. Rosalind, et al.
Publicado: (2014) -
Approximations of Shannon Mutual Information for Discrete Variables with Applications to Neural Population Coding
por: Huang, Wentao, et al.
Publicado: (2019) -
Modeling Categorical Variables by Mutual Information Decomposition
por: Liou, Jiun-Wei, et al.
Publicado: (2023) -
Limitations to Estimating Mutual Information in Large Neural Populations
por: Mölter, Jan, et al.
Publicado: (2020)