Cargando…
Robust Statistics for GNSS Positioning under Harsh Conditions: A Useful Tool?
Navigation problems are generally solved applying least-squares (LS) adjustments. Techniques based on LS can be shown to perform optimally when the system noise is Gaussian distributed and the parametric model is accurately known. Unfortunately, real world problems usually contain unexpectedly large...
Autores principales: | Medina, Daniel, Li, Haoqing, Vilà-Valls, Jordi, Closas, Pau |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960949/ https://www.ncbi.nlm.nih.gov/pubmed/31817922 http://dx.doi.org/10.3390/s19245402 |
Ejemplares similares
-
Robust Filtering Techniques for RTK Positioning in Harsh Propagation Environments
por: Medina, Daniel, et al.
Publicado: (2021) -
Huber’s Non-Linearity for GNSS Interference Mitigation †
por: Borio, Daniele, et al.
Publicado: (2018) -
Deep Learning of GNSS Acquisition
por: Borhani-Darian, Parisa, et al.
Publicado: (2023) -
GNSS Precise Relative Positioning Using A Priori Relative Position in a GNSS Harsh Environment
por: Kim, Euiho
Publicado: (2021) -
Low Complexity Robust Data Demodulation for GNSS
por: Ortega, Lorenzo, et al.
Publicado: (2021)