Cargando…
Reference tool kinematics-kinetics and tissue surface strain data during fundamental surgical acts
Haptic based surgical simulations are popular training aids in medicine. Previously, surgical tool loads and motion were measured during cutting and needle insertion on non-human tissue and several haptic based simulations were developed to enhance surgical training. However, there was a lack of rea...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962378/ https://www.ncbi.nlm.nih.gov/pubmed/31941889 http://dx.doi.org/10.1038/s41597-020-0359-0 |
Sumario: | Haptic based surgical simulations are popular training aids in medicine. Previously, surgical tool loads and motion were measured during cutting and needle insertion on non-human tissue and several haptic based simulations were developed to enhance surgical training. However, there was a lack of realistic foundational data regarding the mechanical responses of human tissue and tools during fundamental acts of surgery, i.e., cutting, suturing, retracting, pinching and indenting. This study used four recently developed surgical tools in a variety of procedures on a diverse set of cadaver leg specimens from human donors. The kinematics and kinetics of surgical tools were recorded along with topical three-dimensional strain during commonly performed surgical procedures. Full motion and load signatures of foundational surgical acts can also be used beyond the development of authentic visual and haptic simulations of surgery, i.e., they provide mechanical specifications for the development of autonomous surgical systems. |
---|