Cargando…

Pyrazinoic Acid Inhibits the Bifunctional Enzyme (Rv2783) in Mycobacterium tuberculosis by Competing with tmRNA

Pyrazinamide (PZA) is a key drug for tuberculosis treatment. The active form of PZA, pyrazinoic acid (POA), appears to inhibit multiple targets in M. tuberculosis. Recently, the bifunctional enzyme Rv2783 was reported as a new target of POA. However, the mechanism by which POA inhibits Rv2783 is not...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Lei, Cui, Peng, Shi, Wanliang, Li, Qiong, Zhang, Wenhong, Li, Min, Zhang, Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6963974/
https://www.ncbi.nlm.nih.gov/pubmed/31718097
http://dx.doi.org/10.3390/pathogens8040230
Descripción
Sumario:Pyrazinamide (PZA) is a key drug for tuberculosis treatment. The active form of PZA, pyrazinoic acid (POA), appears to inhibit multiple targets in M. tuberculosis. Recently, the bifunctional enzyme Rv2783 was reported as a new target of POA. However, the mechanism by which POA inhibits Rv2783 is not yet clear. Here, we report how a new A2104C substitution in Rv2783c, identified in PZA-resistant clinical isolates, conferred resistance to PZA in M. tuberculosis. Expression of the mutant allele recapitulated the PZA resistance. All catalytic activities of Rv2783, but not the mutant, were inhibited by POA. Additionally, POA competed with transfer-messenger RNA (tmRNA) for binding to Rv2783, other than the mutant. These results provide new insight into the molecular mechanism of the antitubercular activity of PZA.