Cargando…

SK2 channels in cerebellar Purkinje cells contribute to excitability modulation in motor-learning–specific memory traces

Neurons store information by changing synaptic input weights. In addition, they can adjust their membrane excitability to alter spike output. Here, we demonstrate a role of such “intrinsic plasticity” in behavioral learning in a mouse model that allows us to detect specific consequences of absent ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Grasselli, Giorgio, Boele, Henk-Jan, Titley, Heather K., Bradford, Nora, van Beers, Lisa, Jay, Lindsey, Beekhof, Gerco C., Busch, Silas E., De Zeeuw, Chris I., Schonewille, Martijn, Hansel, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6964916/
https://www.ncbi.nlm.nih.gov/pubmed/31905212
http://dx.doi.org/10.1371/journal.pbio.3000596
_version_ 1783488549361811456
author Grasselli, Giorgio
Boele, Henk-Jan
Titley, Heather K.
Bradford, Nora
van Beers, Lisa
Jay, Lindsey
Beekhof, Gerco C.
Busch, Silas E.
De Zeeuw, Chris I.
Schonewille, Martijn
Hansel, Christian
author_facet Grasselli, Giorgio
Boele, Henk-Jan
Titley, Heather K.
Bradford, Nora
van Beers, Lisa
Jay, Lindsey
Beekhof, Gerco C.
Busch, Silas E.
De Zeeuw, Chris I.
Schonewille, Martijn
Hansel, Christian
author_sort Grasselli, Giorgio
collection PubMed
description Neurons store information by changing synaptic input weights. In addition, they can adjust their membrane excitability to alter spike output. Here, we demonstrate a role of such “intrinsic plasticity” in behavioral learning in a mouse model that allows us to detect specific consequences of absent excitability modulation. Mice with a Purkinje-cell–specific knockout (KO) of the calcium-activated K(+) channel SK2 (L7-SK2) show intact vestibulo-ocular reflex (VOR) gain adaptation but impaired eyeblink conditioning (EBC), which relies on the ability to establish associations between stimuli, with the eyelid closure itself depending on a transient suppression of spike firing. In these mice, the intrinsic plasticity of Purkinje cells is prevented without affecting long-term depression or potentiation at their parallel fiber (PF) input. In contrast to the typical spike pattern of EBC-supporting zebrin-negative Purkinje cells, L7-SK2 neurons show reduced background spiking but enhanced excitability. Thus, SK2 plasticity and excitability modulation are essential for specific forms of motor learning.
format Online
Article
Text
id pubmed-6964916
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-69649162020-01-26 SK2 channels in cerebellar Purkinje cells contribute to excitability modulation in motor-learning–specific memory traces Grasselli, Giorgio Boele, Henk-Jan Titley, Heather K. Bradford, Nora van Beers, Lisa Jay, Lindsey Beekhof, Gerco C. Busch, Silas E. De Zeeuw, Chris I. Schonewille, Martijn Hansel, Christian PLoS Biol Research Article Neurons store information by changing synaptic input weights. In addition, they can adjust their membrane excitability to alter spike output. Here, we demonstrate a role of such “intrinsic plasticity” in behavioral learning in a mouse model that allows us to detect specific consequences of absent excitability modulation. Mice with a Purkinje-cell–specific knockout (KO) of the calcium-activated K(+) channel SK2 (L7-SK2) show intact vestibulo-ocular reflex (VOR) gain adaptation but impaired eyeblink conditioning (EBC), which relies on the ability to establish associations between stimuli, with the eyelid closure itself depending on a transient suppression of spike firing. In these mice, the intrinsic plasticity of Purkinje cells is prevented without affecting long-term depression or potentiation at their parallel fiber (PF) input. In contrast to the typical spike pattern of EBC-supporting zebrin-negative Purkinje cells, L7-SK2 neurons show reduced background spiking but enhanced excitability. Thus, SK2 plasticity and excitability modulation are essential for specific forms of motor learning. Public Library of Science 2020-01-06 /pmc/articles/PMC6964916/ /pubmed/31905212 http://dx.doi.org/10.1371/journal.pbio.3000596 Text en © 2020 Grasselli et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Grasselli, Giorgio
Boele, Henk-Jan
Titley, Heather K.
Bradford, Nora
van Beers, Lisa
Jay, Lindsey
Beekhof, Gerco C.
Busch, Silas E.
De Zeeuw, Chris I.
Schonewille, Martijn
Hansel, Christian
SK2 channels in cerebellar Purkinje cells contribute to excitability modulation in motor-learning–specific memory traces
title SK2 channels in cerebellar Purkinje cells contribute to excitability modulation in motor-learning–specific memory traces
title_full SK2 channels in cerebellar Purkinje cells contribute to excitability modulation in motor-learning–specific memory traces
title_fullStr SK2 channels in cerebellar Purkinje cells contribute to excitability modulation in motor-learning–specific memory traces
title_full_unstemmed SK2 channels in cerebellar Purkinje cells contribute to excitability modulation in motor-learning–specific memory traces
title_short SK2 channels in cerebellar Purkinje cells contribute to excitability modulation in motor-learning–specific memory traces
title_sort sk2 channels in cerebellar purkinje cells contribute to excitability modulation in motor-learning–specific memory traces
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6964916/
https://www.ncbi.nlm.nih.gov/pubmed/31905212
http://dx.doi.org/10.1371/journal.pbio.3000596
work_keys_str_mv AT grasselligiorgio sk2channelsincerebellarpurkinjecellscontributetoexcitabilitymodulationinmotorlearningspecificmemorytraces
AT boelehenkjan sk2channelsincerebellarpurkinjecellscontributetoexcitabilitymodulationinmotorlearningspecificmemorytraces
AT titleyheatherk sk2channelsincerebellarpurkinjecellscontributetoexcitabilitymodulationinmotorlearningspecificmemorytraces
AT bradfordnora sk2channelsincerebellarpurkinjecellscontributetoexcitabilitymodulationinmotorlearningspecificmemorytraces
AT vanbeerslisa sk2channelsincerebellarpurkinjecellscontributetoexcitabilitymodulationinmotorlearningspecificmemorytraces
AT jaylindsey sk2channelsincerebellarpurkinjecellscontributetoexcitabilitymodulationinmotorlearningspecificmemorytraces
AT beekhofgercoc sk2channelsincerebellarpurkinjecellscontributetoexcitabilitymodulationinmotorlearningspecificmemorytraces
AT buschsilase sk2channelsincerebellarpurkinjecellscontributetoexcitabilitymodulationinmotorlearningspecificmemorytraces
AT dezeeuwchrisi sk2channelsincerebellarpurkinjecellscontributetoexcitabilitymodulationinmotorlearningspecificmemorytraces
AT schonewillemartijn sk2channelsincerebellarpurkinjecellscontributetoexcitabilitymodulationinmotorlearningspecificmemorytraces
AT hanselchristian sk2channelsincerebellarpurkinjecellscontributetoexcitabilitymodulationinmotorlearningspecificmemorytraces