Cargando…

ROCK2 Confers Acquired Gemcitabine Resistance in Pancreatic Cancer Cells by Upregulating Transcription Factor ZEB1

Resistance to chemotherapy is a major clinical challenge in the treatment of pancreatic ductal adenocarcinoma (PDAC). Here, we provide evidence that Rho associated coiled-coil containing protein kinase 2 (ROCK2) maintains gemcitabine resistance in gemcitabine resistant pancreatic cancer cells (GR ce...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Yang, Zhou, Yunjiang, Wang, Keke, Li, Tao, Zhang, Minda, Yang, Yunjia, Wang, Rui, Hu, Rong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966455/
https://www.ncbi.nlm.nih.gov/pubmed/31783584
http://dx.doi.org/10.3390/cancers11121881
Descripción
Sumario:Resistance to chemotherapy is a major clinical challenge in the treatment of pancreatic ductal adenocarcinoma (PDAC). Here, we provide evidence that Rho associated coiled-coil containing protein kinase 2 (ROCK2) maintains gemcitabine resistance in gemcitabine resistant pancreatic cancer cells (GR cells). Pharmacological inhibition or gene silencing of ROCK2 markedly sensitized GR cells to gemcitabine by suppressing the expression of zinc-finger-enhancer binding protein 1 (ZEB1). Mechanically, ROCK2-induced sp1 phosphorylation at Thr-453 enhanced the ability of sp1 binding to ZEB1 promoter regions in a p38-dependent manner. Moreover, transcriptional activation of ZEB1 facilitated GR cells to repair gemcitabine-mediated DNA damage via ATM/p-CHK1 signaling pathway. Our findings demonstrate the essential role of ROCK2 in EMT-induced gemcitabine resistance in pancreatic cancer cells and provide strong evidence for the clinical application of fasudil, a ROCK2 inhibitor, in gemcitabine-refractory PDAC.