Cargando…

Dual and Triple Epithelial Coculture Model Systems with Donor-Derived Microbiota and THP-1 Macrophages To Mimic Host-Microbe Interactions in the Human Sinonasal Cavities

The epithelium of the human sinonasal cavities is colonized by a diverse microbial community, modulating epithelial development and immune priming and playing a role in respiratory disease. Here, we present a novel in vitro approach enabling a 3-day coculture of differentiated Calu-3 respiratory epi...

Descripción completa

Detalles Bibliográficos
Autores principales: De Rudder, Charlotte, Calatayud Arroyo, Marta, Lebeer, Sarah, Van de Wiele, Tom
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6968656/
https://www.ncbi.nlm.nih.gov/pubmed/31941815
http://dx.doi.org/10.1128/mSphere.00916-19
_version_ 1783489179587444736
author De Rudder, Charlotte
Calatayud Arroyo, Marta
Lebeer, Sarah
Van de Wiele, Tom
author_facet De Rudder, Charlotte
Calatayud Arroyo, Marta
Lebeer, Sarah
Van de Wiele, Tom
author_sort De Rudder, Charlotte
collection PubMed
description The epithelium of the human sinonasal cavities is colonized by a diverse microbial community, modulating epithelial development and immune priming and playing a role in respiratory disease. Here, we present a novel in vitro approach enabling a 3-day coculture of differentiated Calu-3 respiratory epithelial cells with a donor-derived bacterial community, a commensal species (Lactobacillus sakei), or a pathobiont (Staphylococcus aureus). We also assessed how the incorporation of macrophage-like cells could have a steering effect on both epithelial cells and the microbial community. Inoculation of donor-derived microbiota in our experimental setup did not pose cytotoxic stress on the epithelial cell layers, as demonstrated by unaltered cytokine and lactate dehydrogenase release compared to a sterile control. Epithelial integrity of the differentiated Calu-3 cells was maintained as well, with no differences in transepithelial electrical resistance observed between coculture with donor-derived microbiota and a sterile control. Transition of nasal microbiota from in vivo to in vitro conditions maintained phylogenetic richness, and yet a decrease in phylogenetic and phenotypic diversity was noted. Additional inclusion and coculture of THP-1-derived macrophages did not alter phylogenetic diversity, and yet donor-independent shifts toward higher Moraxella and Mycoplasma abundance were observed, while phenotypic diversity was also increased. Our results demonstrate that coculture of differentiated airway epithelial cells with a healthy donor-derived nasal community is a viable strategy to mimic host-microbe interactions in the human upper respiratory tract. Importantly, including an immune component allowed us to study host-microbe interactions in the upper respiratory tract more in depth. IMPORTANCE Despite the relevance of the resident microbiota in sinonasal health and disease and the need for cross talk between immune and epithelial cells in the upper respiratory tract, these parameters have not been combined in a single in vitro model system. We have developed a coculture system of differentiated respiratory epithelium and natural nasal microbiota and incorporated an immune component. As indicated by absence of cytotoxicity and stable cytokine profiles and epithelial integrity, nasal microbiota from human origin appeared to be well tolerated by host cells, while microbial community composition remained representative for that of the human (sino)nasal cavity. Importantly, the introduction of macrophage-like cells enabled us to obtain a differential readout from the epithelial cells dependent on the donor microbial background to which the cells were exposed. We conclude that both model systems offer the means to investigate host-microbe interactions in the upper respiratory tract in a more representative way.
format Online
Article
Text
id pubmed-6968656
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-69686562020-02-04 Dual and Triple Epithelial Coculture Model Systems with Donor-Derived Microbiota and THP-1 Macrophages To Mimic Host-Microbe Interactions in the Human Sinonasal Cavities De Rudder, Charlotte Calatayud Arroyo, Marta Lebeer, Sarah Van de Wiele, Tom mSphere Research Article The epithelium of the human sinonasal cavities is colonized by a diverse microbial community, modulating epithelial development and immune priming and playing a role in respiratory disease. Here, we present a novel in vitro approach enabling a 3-day coculture of differentiated Calu-3 respiratory epithelial cells with a donor-derived bacterial community, a commensal species (Lactobacillus sakei), or a pathobiont (Staphylococcus aureus). We also assessed how the incorporation of macrophage-like cells could have a steering effect on both epithelial cells and the microbial community. Inoculation of donor-derived microbiota in our experimental setup did not pose cytotoxic stress on the epithelial cell layers, as demonstrated by unaltered cytokine and lactate dehydrogenase release compared to a sterile control. Epithelial integrity of the differentiated Calu-3 cells was maintained as well, with no differences in transepithelial electrical resistance observed between coculture with donor-derived microbiota and a sterile control. Transition of nasal microbiota from in vivo to in vitro conditions maintained phylogenetic richness, and yet a decrease in phylogenetic and phenotypic diversity was noted. Additional inclusion and coculture of THP-1-derived macrophages did not alter phylogenetic diversity, and yet donor-independent shifts toward higher Moraxella and Mycoplasma abundance were observed, while phenotypic diversity was also increased. Our results demonstrate that coculture of differentiated airway epithelial cells with a healthy donor-derived nasal community is a viable strategy to mimic host-microbe interactions in the human upper respiratory tract. Importantly, including an immune component allowed us to study host-microbe interactions in the upper respiratory tract more in depth. IMPORTANCE Despite the relevance of the resident microbiota in sinonasal health and disease and the need for cross talk between immune and epithelial cells in the upper respiratory tract, these parameters have not been combined in a single in vitro model system. We have developed a coculture system of differentiated respiratory epithelium and natural nasal microbiota and incorporated an immune component. As indicated by absence of cytotoxicity and stable cytokine profiles and epithelial integrity, nasal microbiota from human origin appeared to be well tolerated by host cells, while microbial community composition remained representative for that of the human (sino)nasal cavity. Importantly, the introduction of macrophage-like cells enabled us to obtain a differential readout from the epithelial cells dependent on the donor microbial background to which the cells were exposed. We conclude that both model systems offer the means to investigate host-microbe interactions in the upper respiratory tract in a more representative way. American Society for Microbiology 2020-01-15 /pmc/articles/PMC6968656/ /pubmed/31941815 http://dx.doi.org/10.1128/mSphere.00916-19 Text en Copyright © 2020 De Rudder et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
De Rudder, Charlotte
Calatayud Arroyo, Marta
Lebeer, Sarah
Van de Wiele, Tom
Dual and Triple Epithelial Coculture Model Systems with Donor-Derived Microbiota and THP-1 Macrophages To Mimic Host-Microbe Interactions in the Human Sinonasal Cavities
title Dual and Triple Epithelial Coculture Model Systems with Donor-Derived Microbiota and THP-1 Macrophages To Mimic Host-Microbe Interactions in the Human Sinonasal Cavities
title_full Dual and Triple Epithelial Coculture Model Systems with Donor-Derived Microbiota and THP-1 Macrophages To Mimic Host-Microbe Interactions in the Human Sinonasal Cavities
title_fullStr Dual and Triple Epithelial Coculture Model Systems with Donor-Derived Microbiota and THP-1 Macrophages To Mimic Host-Microbe Interactions in the Human Sinonasal Cavities
title_full_unstemmed Dual and Triple Epithelial Coculture Model Systems with Donor-Derived Microbiota and THP-1 Macrophages To Mimic Host-Microbe Interactions in the Human Sinonasal Cavities
title_short Dual and Triple Epithelial Coculture Model Systems with Donor-Derived Microbiota and THP-1 Macrophages To Mimic Host-Microbe Interactions in the Human Sinonasal Cavities
title_sort dual and triple epithelial coculture model systems with donor-derived microbiota and thp-1 macrophages to mimic host-microbe interactions in the human sinonasal cavities
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6968656/
https://www.ncbi.nlm.nih.gov/pubmed/31941815
http://dx.doi.org/10.1128/mSphere.00916-19
work_keys_str_mv AT deruddercharlotte dualandtripleepithelialcoculturemodelsystemswithdonorderivedmicrobiotaandthp1macrophagestomimichostmicrobeinteractionsinthehumansinonasalcavities
AT calatayudarroyomarta dualandtripleepithelialcoculturemodelsystemswithdonorderivedmicrobiotaandthp1macrophagestomimichostmicrobeinteractionsinthehumansinonasalcavities
AT lebeersarah dualandtripleepithelialcoculturemodelsystemswithdonorderivedmicrobiotaandthp1macrophagestomimichostmicrobeinteractionsinthehumansinonasalcavities
AT vandewieletom dualandtripleepithelialcoculturemodelsystemswithdonorderivedmicrobiotaandthp1macrophagestomimichostmicrobeinteractionsinthehumansinonasalcavities