Cargando…

Engineered C–N Lyase: Enantioselective Synthesis of Chiral Synthons for Artificial Dipeptide Sweeteners

Aspartic acid derivatives with branched N‐alkyl or N‐arylalkyl substituents are valuable precursors to artificial dipeptide sweeteners such as neotame and advantame. The development of a biocatalyst to synthesize these compounds in a single asymmetric step is an as yet unmet challenge. Reported here...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jielin, Grandi, Eleonora, Fu, Haigen, Saravanan, Thangavelu, Bothof, Laura, Tepper, Pieter G., Thunnissen, Andy‐Mark W. H., Poelarends, Gerrit J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6973171/
https://www.ncbi.nlm.nih.gov/pubmed/31625664
http://dx.doi.org/10.1002/anie.201910704
Descripción
Sumario:Aspartic acid derivatives with branched N‐alkyl or N‐arylalkyl substituents are valuable precursors to artificial dipeptide sweeteners such as neotame and advantame. The development of a biocatalyst to synthesize these compounds in a single asymmetric step is an as yet unmet challenge. Reported here is an enantioselective biocatalytic synthesis of various difficult N‐substituted aspartic acids, including N‐(3,3‐dimethylbutyl)‐l‐aspartic acid and N‐[3‐(3‐hydroxy‐4‐methoxyphenyl)propyl]‐l‐aspartic acid, precursors to neotame and advantame, respectively, using an engineered variant of ethylenediamine‐N,N′‐disuccinic acid (EDDS) lyase from Chelativorans sp. BNC1. This engineered C–N lyase (mutant D290M/Y320M) displayed a remarkable 1140‐fold increase in activity for the selective hydroamination of fumarate compared to that of the wild‐type enzyme. These results present new opportunities to develop practical multienzymatic processes for the more sustainable and step‐economic synthesis of an important class of food additives.