Cargando…
Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration
How adult neurons coordinate lipid metabolism to regenerate axons remains elusive. We found that depleting neuronal lipin1, a key enzyme controlling the balanced synthesis of glycerolipids through the glycerol phosphate pathway, enhanced axon regeneration after optic nerve injury. Axotomy elevated l...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6975164/ https://www.ncbi.nlm.nih.gov/pubmed/31786011 http://dx.doi.org/10.1016/j.neuron.2019.10.009 |
_version_ | 1783490244967923712 |
---|---|
author | Yang, Chao Wang, Xu Wang, Jianying Wang, Xuejie Chen, Weitao Lu, Na Siniossoglou, Symeon Yao, Zhongping Liu, Kai |
author_facet | Yang, Chao Wang, Xu Wang, Jianying Wang, Xuejie Chen, Weitao Lu, Na Siniossoglou, Symeon Yao, Zhongping Liu, Kai |
author_sort | Yang, Chao |
collection | PubMed |
description | How adult neurons coordinate lipid metabolism to regenerate axons remains elusive. We found that depleting neuronal lipin1, a key enzyme controlling the balanced synthesis of glycerolipids through the glycerol phosphate pathway, enhanced axon regeneration after optic nerve injury. Axotomy elevated lipin1 in retinal ganglion cells, which contributed to regeneration failure in the CNS by favorably producing triglyceride (TG) storage lipids rather than phospholipid (PL) membrane lipids in neurons. Regrowth induced by lipin1 depletion required TG hydrolysis and PL synthesis. Decreasing TG synthesis by deleting neuronal diglyceride acyltransferases (DGATs) and enhancing PL synthesis through the Kennedy pathway promoted axon regeneration. In addition, peripheral neurons adopted this mechanism for their spontaneous axon regeneration. Our study reveals a critical role of lipin1 and DGATs as intrinsic regulators of glycerolipid metabolism in neurons and indicates that directing neuronal lipid synthesis away from TG synthesis and toward PL synthesis may promote axon regeneration. |
format | Online Article Text |
id | pubmed-6975164 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-69751642020-01-28 Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration Yang, Chao Wang, Xu Wang, Jianying Wang, Xuejie Chen, Weitao Lu, Na Siniossoglou, Symeon Yao, Zhongping Liu, Kai Neuron Article How adult neurons coordinate lipid metabolism to regenerate axons remains elusive. We found that depleting neuronal lipin1, a key enzyme controlling the balanced synthesis of glycerolipids through the glycerol phosphate pathway, enhanced axon regeneration after optic nerve injury. Axotomy elevated lipin1 in retinal ganglion cells, which contributed to regeneration failure in the CNS by favorably producing triglyceride (TG) storage lipids rather than phospholipid (PL) membrane lipids in neurons. Regrowth induced by lipin1 depletion required TG hydrolysis and PL synthesis. Decreasing TG synthesis by deleting neuronal diglyceride acyltransferases (DGATs) and enhancing PL synthesis through the Kennedy pathway promoted axon regeneration. In addition, peripheral neurons adopted this mechanism for their spontaneous axon regeneration. Our study reveals a critical role of lipin1 and DGATs as intrinsic regulators of glycerolipid metabolism in neurons and indicates that directing neuronal lipid synthesis away from TG synthesis and toward PL synthesis may promote axon regeneration. Cell Press 2020-01-22 /pmc/articles/PMC6975164/ /pubmed/31786011 http://dx.doi.org/10.1016/j.neuron.2019.10.009 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yang, Chao Wang, Xu Wang, Jianying Wang, Xuejie Chen, Weitao Lu, Na Siniossoglou, Symeon Yao, Zhongping Liu, Kai Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration |
title | Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration |
title_full | Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration |
title_fullStr | Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration |
title_full_unstemmed | Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration |
title_short | Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration |
title_sort | rewiring neuronal glycerolipid metabolism determines the extent of axon regeneration |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6975164/ https://www.ncbi.nlm.nih.gov/pubmed/31786011 http://dx.doi.org/10.1016/j.neuron.2019.10.009 |
work_keys_str_mv | AT yangchao rewiringneuronalglycerolipidmetabolismdeterminestheextentofaxonregeneration AT wangxu rewiringneuronalglycerolipidmetabolismdeterminestheextentofaxonregeneration AT wangjianying rewiringneuronalglycerolipidmetabolismdeterminestheextentofaxonregeneration AT wangxuejie rewiringneuronalglycerolipidmetabolismdeterminestheextentofaxonregeneration AT chenweitao rewiringneuronalglycerolipidmetabolismdeterminestheextentofaxonregeneration AT luna rewiringneuronalglycerolipidmetabolismdeterminestheextentofaxonregeneration AT siniossoglousymeon rewiringneuronalglycerolipidmetabolismdeterminestheextentofaxonregeneration AT yaozhongping rewiringneuronalglycerolipidmetabolismdeterminestheextentofaxonregeneration AT liukai rewiringneuronalglycerolipidmetabolismdeterminestheextentofaxonregeneration |