Cargando…

Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration

How adult neurons coordinate lipid metabolism to regenerate axons remains elusive. We found that depleting neuronal lipin1, a key enzyme controlling the balanced synthesis of glycerolipids through the glycerol phosphate pathway, enhanced axon regeneration after optic nerve injury. Axotomy elevated l...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Chao, Wang, Xu, Wang, Jianying, Wang, Xuejie, Chen, Weitao, Lu, Na, Siniossoglou, Symeon, Yao, Zhongping, Liu, Kai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6975164/
https://www.ncbi.nlm.nih.gov/pubmed/31786011
http://dx.doi.org/10.1016/j.neuron.2019.10.009
_version_ 1783490244967923712
author Yang, Chao
Wang, Xu
Wang, Jianying
Wang, Xuejie
Chen, Weitao
Lu, Na
Siniossoglou, Symeon
Yao, Zhongping
Liu, Kai
author_facet Yang, Chao
Wang, Xu
Wang, Jianying
Wang, Xuejie
Chen, Weitao
Lu, Na
Siniossoglou, Symeon
Yao, Zhongping
Liu, Kai
author_sort Yang, Chao
collection PubMed
description How adult neurons coordinate lipid metabolism to regenerate axons remains elusive. We found that depleting neuronal lipin1, a key enzyme controlling the balanced synthesis of glycerolipids through the glycerol phosphate pathway, enhanced axon regeneration after optic nerve injury. Axotomy elevated lipin1 in retinal ganglion cells, which contributed to regeneration failure in the CNS by favorably producing triglyceride (TG) storage lipids rather than phospholipid (PL) membrane lipids in neurons. Regrowth induced by lipin1 depletion required TG hydrolysis and PL synthesis. Decreasing TG synthesis by deleting neuronal diglyceride acyltransferases (DGATs) and enhancing PL synthesis through the Kennedy pathway promoted axon regeneration. In addition, peripheral neurons adopted this mechanism for their spontaneous axon regeneration. Our study reveals a critical role of lipin1 and DGATs as intrinsic regulators of glycerolipid metabolism in neurons and indicates that directing neuronal lipid synthesis away from TG synthesis and toward PL synthesis may promote axon regeneration.
format Online
Article
Text
id pubmed-6975164
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-69751642020-01-28 Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration Yang, Chao Wang, Xu Wang, Jianying Wang, Xuejie Chen, Weitao Lu, Na Siniossoglou, Symeon Yao, Zhongping Liu, Kai Neuron Article How adult neurons coordinate lipid metabolism to regenerate axons remains elusive. We found that depleting neuronal lipin1, a key enzyme controlling the balanced synthesis of glycerolipids through the glycerol phosphate pathway, enhanced axon regeneration after optic nerve injury. Axotomy elevated lipin1 in retinal ganglion cells, which contributed to regeneration failure in the CNS by favorably producing triglyceride (TG) storage lipids rather than phospholipid (PL) membrane lipids in neurons. Regrowth induced by lipin1 depletion required TG hydrolysis and PL synthesis. Decreasing TG synthesis by deleting neuronal diglyceride acyltransferases (DGATs) and enhancing PL synthesis through the Kennedy pathway promoted axon regeneration. In addition, peripheral neurons adopted this mechanism for their spontaneous axon regeneration. Our study reveals a critical role of lipin1 and DGATs as intrinsic regulators of glycerolipid metabolism in neurons and indicates that directing neuronal lipid synthesis away from TG synthesis and toward PL synthesis may promote axon regeneration. Cell Press 2020-01-22 /pmc/articles/PMC6975164/ /pubmed/31786011 http://dx.doi.org/10.1016/j.neuron.2019.10.009 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Yang, Chao
Wang, Xu
Wang, Jianying
Wang, Xuejie
Chen, Weitao
Lu, Na
Siniossoglou, Symeon
Yao, Zhongping
Liu, Kai
Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration
title Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration
title_full Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration
title_fullStr Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration
title_full_unstemmed Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration
title_short Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration
title_sort rewiring neuronal glycerolipid metabolism determines the extent of axon regeneration
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6975164/
https://www.ncbi.nlm.nih.gov/pubmed/31786011
http://dx.doi.org/10.1016/j.neuron.2019.10.009
work_keys_str_mv AT yangchao rewiringneuronalglycerolipidmetabolismdeterminestheextentofaxonregeneration
AT wangxu rewiringneuronalglycerolipidmetabolismdeterminestheextentofaxonregeneration
AT wangjianying rewiringneuronalglycerolipidmetabolismdeterminestheextentofaxonregeneration
AT wangxuejie rewiringneuronalglycerolipidmetabolismdeterminestheextentofaxonregeneration
AT chenweitao rewiringneuronalglycerolipidmetabolismdeterminestheextentofaxonregeneration
AT luna rewiringneuronalglycerolipidmetabolismdeterminestheextentofaxonregeneration
AT siniossoglousymeon rewiringneuronalglycerolipidmetabolismdeterminestheextentofaxonregeneration
AT yaozhongping rewiringneuronalglycerolipidmetabolismdeterminestheextentofaxonregeneration
AT liukai rewiringneuronalglycerolipidmetabolismdeterminestheextentofaxonregeneration