Cargando…
Codon optimization is an essential parameter for the efficient allotopic expression of mtDNA genes()
Mutations in mitochondrial DNA can be inherited or occur de novo leading to several debilitating myopathies with no curative option and few or no effective treatments. Allotopic expression of recoded mitochondrial genes from the nucleus has potential as a gene therapy strategy for such conditions, h...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6976934/ https://www.ncbi.nlm.nih.gov/pubmed/31981894 http://dx.doi.org/10.1016/j.redox.2020.101429 |
_version_ | 1783490405250105344 |
---|---|
author | Lewis, Caitlin J. Dixit, Bhavna Batiuk, Elizabeth Hall, Carter J. O'Connor, Matthew S. Boominathan, Amutha |
author_facet | Lewis, Caitlin J. Dixit, Bhavna Batiuk, Elizabeth Hall, Carter J. O'Connor, Matthew S. Boominathan, Amutha |
author_sort | Lewis, Caitlin J. |
collection | PubMed |
description | Mutations in mitochondrial DNA can be inherited or occur de novo leading to several debilitating myopathies with no curative option and few or no effective treatments. Allotopic expression of recoded mitochondrial genes from the nucleus has potential as a gene therapy strategy for such conditions, however progress in this field has been hampered by technical challenges. Here we employed codon optimization as a tool to re-engineer the protein-coding genes of the human mitochondrial genome for robust, efficient expression from the nucleus. All 13 codon-optimized constructs exhibited substantially higher protein expression than minimally-recoded genes when expressed transiently, and steady-state mRNA levels for optimized gene constructs were 5–180 fold enriched over recoded versions in stably-selected wildtype cells. Eight of thirteen mitochondria-encoded oxidative phosphorylation (OxPhos) proteins maintained protein expression following stable selection, with mitochondrial localization of expression products. We also assessed the utility of this strategy in rescuing mitochondrial disease cell models and found the rescue capacity of allotopic expression constructs to be gene specific. Allotopic expression of codon optimized ATP8 in disease models could restore protein levels and respiratory function, however, rescue of the pathogenic phenotype for another gene, ND1 was only partially successful. These results imply that though codon-optimization alone is not sufficient for functional allotopic expression of most mitochondrial genes, it is an essential consideration in their design. |
format | Online Article Text |
id | pubmed-6976934 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-69769342020-01-28 Codon optimization is an essential parameter for the efficient allotopic expression of mtDNA genes() Lewis, Caitlin J. Dixit, Bhavna Batiuk, Elizabeth Hall, Carter J. O'Connor, Matthew S. Boominathan, Amutha Redox Biol Research Paper Mutations in mitochondrial DNA can be inherited or occur de novo leading to several debilitating myopathies with no curative option and few or no effective treatments. Allotopic expression of recoded mitochondrial genes from the nucleus has potential as a gene therapy strategy for such conditions, however progress in this field has been hampered by technical challenges. Here we employed codon optimization as a tool to re-engineer the protein-coding genes of the human mitochondrial genome for robust, efficient expression from the nucleus. All 13 codon-optimized constructs exhibited substantially higher protein expression than minimally-recoded genes when expressed transiently, and steady-state mRNA levels for optimized gene constructs were 5–180 fold enriched over recoded versions in stably-selected wildtype cells. Eight of thirteen mitochondria-encoded oxidative phosphorylation (OxPhos) proteins maintained protein expression following stable selection, with mitochondrial localization of expression products. We also assessed the utility of this strategy in rescuing mitochondrial disease cell models and found the rescue capacity of allotopic expression constructs to be gene specific. Allotopic expression of codon optimized ATP8 in disease models could restore protein levels and respiratory function, however, rescue of the pathogenic phenotype for another gene, ND1 was only partially successful. These results imply that though codon-optimization alone is not sufficient for functional allotopic expression of most mitochondrial genes, it is an essential consideration in their design. Elsevier 2020-01-11 /pmc/articles/PMC6976934/ /pubmed/31981894 http://dx.doi.org/10.1016/j.redox.2020.101429 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Lewis, Caitlin J. Dixit, Bhavna Batiuk, Elizabeth Hall, Carter J. O'Connor, Matthew S. Boominathan, Amutha Codon optimization is an essential parameter for the efficient allotopic expression of mtDNA genes() |
title | Codon optimization is an essential parameter for the efficient allotopic expression of mtDNA genes() |
title_full | Codon optimization is an essential parameter for the efficient allotopic expression of mtDNA genes() |
title_fullStr | Codon optimization is an essential parameter for the efficient allotopic expression of mtDNA genes() |
title_full_unstemmed | Codon optimization is an essential parameter for the efficient allotopic expression of mtDNA genes() |
title_short | Codon optimization is an essential parameter for the efficient allotopic expression of mtDNA genes() |
title_sort | codon optimization is an essential parameter for the efficient allotopic expression of mtdna genes() |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6976934/ https://www.ncbi.nlm.nih.gov/pubmed/31981894 http://dx.doi.org/10.1016/j.redox.2020.101429 |
work_keys_str_mv | AT lewiscaitlinj codonoptimizationisanessentialparameterfortheefficientallotopicexpressionofmtdnagenes AT dixitbhavna codonoptimizationisanessentialparameterfortheefficientallotopicexpressionofmtdnagenes AT batiukelizabeth codonoptimizationisanessentialparameterfortheefficientallotopicexpressionofmtdnagenes AT hallcarterj codonoptimizationisanessentialparameterfortheefficientallotopicexpressionofmtdnagenes AT oconnormatthews codonoptimizationisanessentialparameterfortheefficientallotopicexpressionofmtdnagenes AT boominathanamutha codonoptimizationisanessentialparameterfortheefficientallotopicexpressionofmtdnagenes |