Cargando…

Frontline Science: TNF‐α and GM‐CSF1 priming augments the role of SOS1/2 in driving activation of Ras, PI3K‐γ, and neutrophil proinflammatory responses

Circulating neutrophils are, by necessity, quiescent and relatively unresponsive to acute stimuli. In regions of inflammation, mediators can prime neutrophils to react to acute stimuli with stronger proinflammatory, pathogen‐killing responses. In neutrophils G protein‐coupled receptor (GPCR)‐driven...

Descripción completa

Detalles Bibliográficos
Autores principales: Suire, Sabine, Baltanas, Fernando C., Segonds‐Pichon, Anne, Davidson, Keith, Santos, Eugenio, Hawkins, Phillip T., Stephens, Len R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6977543/
https://www.ncbi.nlm.nih.gov/pubmed/30720883
http://dx.doi.org/10.1002/JLB.2HI0918-359RR
Descripción
Sumario:Circulating neutrophils are, by necessity, quiescent and relatively unresponsive to acute stimuli. In regions of inflammation, mediators can prime neutrophils to react to acute stimuli with stronger proinflammatory, pathogen‐killing responses. In neutrophils G protein‐coupled receptor (GPCR)‐driven proinflammatory responses, such as reactive oxygen species (ROS) formation and accumulation of the key intracellular messenger phosphatidylinositol (3,4,5)‐trisphosphate (PIP(3)), are highly dependent on PI3K‐γ, a Ras‐GTP, and Gβγ coincidence detector. In unprimed cells, the major GPCR‐triggered activator of Ras is the Ras guanine nucleotide exchange factor (GEF), Ras guanine nucleotide releasing protein 4 (RasGRP4). Although priming is known to increase GPCR–PIP(3) signaling, the mechanisms underlying this augmentation remain unclear. We used genetically modified mice to address the role of the 2 RasGEFs, RasGRP4 and son of sevenless (SOS)1/2, in neutrophil priming. We found that following GM‐CSF/TNFα priming, RasGRP4 had only a minor role in the enhanced responses. In contrast, SOS1/2 acquired a substantial role in ROS formation, PIP(3) accumulation, and ERK activation in primed cells. These results suggest that SOS1/2 signaling plays a key role in determining the responsiveness of neutrophils in regions of inflammation.